ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for variation of fundamental constants and violations of fundamental symmetries using isotope comparisons

128   0   0.0 ( 0 )
 نشر من قبل Julian Berengut
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic microwave clocks based on hyperfine transitions, such as the caesium standard, tick with a frequency that is proportional to the magnetic moment of the nucleus. This magnetic moment varies strongly between isotopes of the same atom, while all atomic electron parameters remain the same. Therefore the comparison of two microwave clocks based on different isotopes of the same atom can be used to constrain variation of fundamental constants. In this paper we calculate the neutron and proton contributions to the nuclear magnetic moments, as well as their sensitivity to any potential quark mass variation, in a number of isotopes of experimental interest including 201,199Hg and 87,85Rb, where experiments are underway. We also include a brief treatment of the dependence of the hyperfine transitions to variation in nuclear radius, which in turn is proportional to any change in quark mass. Our calculations of expectation-values of proton and neutron spin in nuclei are also needed to interpret measurements of violations of fundamental symmetries.



قيم البحث

اقرأ أيضاً

We investigate the effect of a variation of fundamental constants on primordial element production in Big Bang nucleosynthesis (BBN). We focus on the effect of a possible change in the nucleon-nucleon interaction on nuclear reaction rates involving t he A=5 (5Li and 5He) and A=8 (8Be) unstable nuclei. The reaction rates for 3He(d,p)4He and 3H(d,n)4He are dominated by the properties of broad analog resonances in 5Li and 5He compound nuclei respectively. While the triple-alpha process 4He(aa,g)12C is normally not effective in BBN, its rate is very sensitive to the position of the Hoyle state and could in principle be drastically affected if 8Be were stable during BBN. We found that the effect of the variation of constants on the 3He(d,p)4He, 3H(d,n)4He nd 4He(aa,g)12C reaction rates is not sufficient to induce a significant effect on BBN, even with a stable 8Be. The main influences come from the weak rates and the A=2, n(p,g)d, bottleneck reaction.
Using modern methods of reactor physics we have performed full-scale calculations of the natural reactor Oklo. For reliability we have used recent version of two Monte Carlo codes: Russian code MCU REA and world wide known code MCNP (USA). Both codes produce similar results. We have constructed a computer model of the reactor Oklo zone RZ2 which takes into account all details of design and composition. The calculations were performed for three fresh cores with different uranium contents. Multiplication factors, reactivities and neutron fluxes were calculated. We have estimated also the temperature and void effects for the fresh core. As would be expected, we have found for the fresh core a significant difference between reactor and Maxwell spectra, which was used before for averaging cross sections in the Oklo reactor. The averaged cross section of Sm-149 and its dependence on the shift of resonance position (due to variation of fundamental constants) are significantly different from previous results. Contrary to results of some previous papers we find no evidence for the change of the fine structure constant in the past and obtain new, most accurate limits on its variation with time: -4 10^{-17}year^{-1} < d alpha/dt/alpha < 3 10^{-17} year^{-1} A further improvement in the accuracy of the limits can be achieved by taking account of the core burnup. These calculations are in progress.
134 - C. Bambi , A. Drago 2008
The formation of a strange or hybrid star from a neutron star progenitor is believed to occur when the central stellar density exceeds a critical value. If the transition from hadron to quark matter is of first order, the event has to release a huge amount of energy in a very short time and we would be able to observe the phenomenon even if it is at cosmological distance far from us; most likely, such violent quark deconfinement would be associated with at least a fraction of the observed gamma ray bursts. If we allow for temporal variations of fundamental constants like $Lambda_{QCD}$ or $G_N$, we can expect that neutron stars with an initial central density just below the critical value can enter into the region where strange or hybrid stars are the true ground state. From the observed rate of long gamma ray bursts, we are able to deduce the constraint $dot{G}_N/G_N lesssim 10^{-17} {rm yr^{-1}}$, which is about 5 orders of magnitude more stringent than the strongest previous bounds on a possible increasing $G_N$.
We propose to use diatomic molecular ions to search for strongly enhanced effects of variation of fundamental constants. The relative enhancement occurs in transitions between nearly degenerate levels of different nature. Since the trapping technique s for molecular ions have already been developed, the molecules HBr$^+$, HI$^+$, Br$^+_2$, I$^+_2$, IBr$^+$, ICl$^+$, and IF$^+$ are very promising candidates for such future studies.
The possible use of high-resolution rovibrational spectroscopy of the hydrogen molecular ions H + 2 and HD + for an independent determination of several fundamental constants is analyzed. While these molecules had been proposed for metrology of nucle ar-to-electron mass ratios, we show that they are also sensitive to the radii of the proton and deuteron and to the Rydberg constant at the level of the current discrepancies colloquially known as the proton size puzzle. The required level of accuracy, in the 10 --12 range, can be reached both by experiments, using Doppler-free two-photon spectroscopy schemes, and by theoretical predictions. It is shown how the measurement of several well-chosen rovibrational transitions may shed new light on the proton-radius puzzle, provide an alternative accurate determination of the Rydberg constant, and yield new values of the proton-to-electron and deuteron-to-proton mass ratios with one order of magnitude higher precision.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا