ترغب بنشر مسار تعليمي؟ اضغط هنا

Nanoscale wear and kinetic friction between atomically smooth surfaces sliding at high speeds

110   0   0.0 ( 0 )
 نشر من قبل Sukumar Rajauria dr
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The kinetic friction and wear at high sliding speeds is investigated using the head-disk interface of hard disk drives, wherein, the head and the disk are less than 10 nm apart and move at sliding speeds of 5-10 m/s relative to each other. While the spacing between the sliding surfaces is of the same order of magnitude as various AFM based fundamental studies on friction, the sliding speed is nearly six orders of magnitude larger, allowing a unique set-up for a systematic study of nanoscale wear at high sliding speeds. In a hard disk drive, the physical contact between the head and the disk leads to friction, wear and degradation of the head overcoat material (typically diamond like carbon). In this work, strain gauge based friction measurements are performed; the friction coefficient as well as the adhering shear strength at the head-disk interface are extracted; and an experimental set-up for studying friction between high speed sliding surfaces is exemplified.



قيم البحث

اقرأ أيضاً

The understanding of tribo- and electro-chemical phenomenons on the molecular level at a sliding interface is a field of growing interest. Fundamental chemical and physical insights of sliding surfaces are crucial for understanding wear at an interfa ce, particularly for nano or micro scale devices operating at high sliding speeds. A complete investigation of the electrochemical effects on high sliding speed interfaces requires a precise monitoring of both the associated wear and surface chemical reactions at the interface. Here, we demonstrate that head-disk interface inside a commercial magnetic storage hard disk drive provides a unique system for such studies. The results obtained shows that the voltage assisted electrochemical wear lead to asymmetric wear on either side of sliding interface.
The structure and motion of carbon and h-BN nanotubes (NTs) deposited on graphene is inquired theoretically by simulations based on state-of-the-art interatomic force fields. Results show that any typical cylinder-over-surface approximation is essent ially inaccurate. NTs tend to flatten at the interface with the substrate and upon driving they can either roll or slide depending on their size and on their relative orientation with the substrate. In the epitaxially aligned orientation we find that rolling is always the main mechanism of motion, producing a kinetic friction linearly growing with the number of walls, in turn causing an unprecedented supra-linear scaling with the contact area. A 30 degrees misalignment raises superlubric effects, making sliding favorable against rolling. The resulting rolling-to-sliding transition in misaligned NTs is explained in terms of the faceting appearing in large multi-wall tubes, which is responsible for the increased rotational stiffness. Modifying the geometrical conditions provides an additional means of drastically tailoring the frictional properties in this unique tribological system.
131 - X. M. Liang , G. F. Wang 2021
Traditional laws of friction believe that the friction coefficient of two specific solids takes constant value. However, molecular simulations revealed that the friction coefficient of nanosized asperity depends strongly on contact size and asperity radius. Since contacting surfaces are always rough consisting of asperities varying dramatically in geometric size, a theoretical model is developed to predict the friction behavior of fractal rough surfaces in this work. The result of atomic-scale simulations of sphere-on-flat friction is summarized into a uniform expression. Then, the size dependent feature of friction at nanoscale is incorporated into the analysis of fractal rough surfaces. The obtained results display the dependence of friction coefficient on roughness, material properties and load. It is revealed that the friction coefficient decreases with increasing contact area or external load. This model gives a theoretical guideline for the prediction of friction coefficient and the design of friction pairs.
Friction is a complicated phenomenon involving nonlinear dynamics at different length and time scales[1, 2]. The microscopic origin of friction is poorly understood, due in part to a lack of methods for measuring the force on a nanometer-scale asperi ty sliding at velocity of the order of cm/s.[3, 4] Despite enormous advance in experimental techniques[5], this combination of small length scale and high velocity remained illusive. Here we present a technique for rapidly measuring the frictional forces on a single asperity (an AFM tip) over a velocity range from zero to several cm/s. At each image pixel we obtain the velocity dependence of both conservative and dissipative forces, revealing the transition from stick-slip to a smooth sliding friction[1, 6]. We explain measurements on graphite using a modified Prandtl-Tomlinson model that takes into account the damped elastic deformation of the asperity. With its greatly improved force sensitivity and very small sliding amplitude, our method enables rapid and detailed surface mapping of the full velocity-dependence of frictional forces with less than 10~nm spatial resolution.
Despite essentially identical crystallography and equilibrium structuring of water, nanoscopic channels composed of hexagonal boron nitride and graphite exhibit an order-of-magnitude difference in fluid slip. We investigate this difference using mole cular dynamics simulations, demonstrating that its origin is in the distinct chemistries of the two materials. In particular, the presence of polar bonds in hexagonal boron nitride, absent in graphite, leads to Coulombic interactions between the polar water molecules and the wall. We demonstrate that this interaction is manifested in a large typical lateral force experienced by a layer of oriented hydrogen atoms in the vicinity of the wall, leading to the enhanced friction in hexagonal boron nitride. The fluid adhesion to the wall is dominated by dispersive forces in both materials, leading to similar wettabilities. Our results rationalize recent observations that the difference in frictional characteristics of graphite and hexagonal boron nitride cannot be explained on the basis of the minor differences in their wettabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا