ﻻ يوجد ملخص باللغة العربية
The presence of two light higgsinos nearly degenerate in mass is one of the important characteristics of suspersymmetric models meeting the naturalness criteria. Probing such higgsinos at the LHC is very challenging, in particular when the mass-splitting between them is less than 5 GeV. In this study, we analyze such a degenerate higgsino scenario by exploiting the high collinearity between the two muons which originate from the decay of the heavier higgsino into the lighter one and which are accompanied by a high-$p_T$ QCD jet. Using our method, we can achieve a statistical significance $sim 2.9,sigma$ as well as a $S/B sim 17%$ with an integrated luminosity of 3000 fb$^{-1}$ at the 14 TeV LHC, for the pair production of higgsinos with masses 124 GeV and 120 GeV. A good sensitivity can be achieved even for a smaller mass-splitting when the higgsinos are lighter.
We present a new strategy to uncover light, quasi-degenerate Higgsinos, a likely ingredient in a natural supersymmetric model. Our strategy focuses on Higgsinos with inter-state splittings of O(5-50) GeV that are produced in association with a hard,
In supersymmetric models with light higgsinos (which are motivated by electroweak naturalness arguments), the direct production of higgsino pairs may be difficult to search for at LHC due to the low visible energy release from their decays. However,
We study the implications of a large degree of compositeness for the light generation quarks in composite pseudo-Nambu-Goldstone-boson Higgs models. We focus in particular on viable scenarios where the right-handed up-type quarks have a sizable mixin
Mirage mediation realized in the KKLT flux compactification can naturally suppress the up-type Higgs soft mass at low energy scales, and consequently it can reduce the degree of electroweak fine-tuning up to a loop factor. Interestingly, this feature
Light states associated with the hierarchy problem affect the Higgs LHC production and decays. We illustrate this within the MSSM and two simple extensions applying the latest bounds from LHC Higgs searches. Large deviations in the Higgs properties a