ﻻ يوجد ملخص باللغة العربية
We present a new strategy to uncover light, quasi-degenerate Higgsinos, a likely ingredient in a natural supersymmetric model. Our strategy focuses on Higgsinos with inter-state splittings of O(5-50) GeV that are produced in association with a hard, initial state jet and decay via off-shell gauge bosons to two or more leptons and missing energy, $pp to j + text{MET}, + 2^+, ell$. The additional jet is used for triggering, allowing us to significantly loosen the lepton requirements and gain sensitivity to small inter-Higgsino splittings. Focusing on the two-lepton signal, we find the seemingly large backgrounds from diboson plus jet, $bar tt$ and $Z/gamma^* + j$ can be reduced with careful cuts, and that fake backgrounds appear minor. For Higgsino masses $m_{chi}$ just above the current LEP II bound ($mu simeq 110,$) GeV we find the significance can be as high as 3 sigma at the LHC using the existing 20 fb$^{-1}$ of 8 TeV data. Extrapolating to LHC at 14 TeV with 100 fb$^{-1}$ data, and as one example $M_1 = M_2 = 500$ GeV, we find 5 sigma evidence for $m_{chi} lesssim, 140,$ GeV and 2 sigma evidence for $m_{chi} lesssim, 200,$ GeV . We also present a reinterpretation of ATLAS/CMS monojet bounds in terms of degenerate Higgsino ($delta m_{chi} ll 5,$) GeV plus jet production. We find the current monojet bounds on $m_{chi}$ are no better than the chargino bounds from LEP II.
The presence of two light higgsinos nearly degenerate in mass is one of the important characteristics of suspersymmetric models meeting the naturalness criteria. Probing such higgsinos at the LHC is very challenging, in particular when the mass-split
We discuss a novel signature of dark matter production at the LHC resulting from the emission of an additional Higgs boson in the dark sector. The presence of such a dark Higgs boson is motivated simultaneously by the need to generate the masses of t
We discuss whether the behaviour of some hadronic quantities, such as the total cross-section, the ratio of the elastic to the total cross-section, are presently exhibiting the asymptotic behaviour expected at very large energies. We find phenomenolo
The LHC search strategies for leptoquarks that couple dominantly to a top quark are different than for the ones that couple mostly to the light quarks. We consider charge $1/3$ ($phi_1$) and $5/3$ ($phi_5$) scalar leptoquarks that can decay to a top
New physics close to the electroweak scale is well motivated by a number of theoretical arguments. However, colliders, most notably the Large Hadron Collider (LHC), have failed to deliver evidence for physics beyond the Standard Model. One possibilit