ترغب بنشر مسار تعليمي؟ اضغط هنا

Development of mirrors made of chemically tempered glass foils for future X-ray telescopes

264   0   0.0 ( 0 )
 نشر من قبل Bianca Salmaso Mrs
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thin slumped glass foils are considered good candidates for the realization of future X-ray telescopes with large effective area and high spatial resolution. However, the hot slumping process affects the glass strength, and this can be an issue during the launch of the satellite because of the high kinematical and static loads occurring during that phase. In the present work we have investigated the possible use of Gorilla glass (produced by Corning), a chemical tempered glass that, thanks to its strength characteristics, would be ideal. The un-tempered glass foils were curved by means of an innovative hot slumping technique and subsequently chemically tempered. In this paper we show that the chemical tempering process applied to Gorilla glass foils does not affect the surface micro-roughness of the mirrors. On the other end, the stress introduced by the tempering process causes a reduction in the amplitude of the longitudinal profile errors with a lateral size close to the mirror length. The effect of the overall shape changes in the final resolution performance of the glass mirrors was studied by simulating the glass foils integration with our innovative approach based on glass reinforcing ribs. The preliminary tests performed so far suggest that this approach has the potential to be applied to the X-ray telescopes of the next generation.



قيم البحث

اقرأ أيضاً

We present a method for the manufacturing of thin shells of glass, which appears promising for the development of active optics for future space telescopes. The method exploits the synergy of different mature technologies, while leveraging the commer cial availability of large, high-quality sheets of glass, with thickness up to few millimeters. The first step of the method foresees the pre-shaping of flat substrates of glass by replicating the accurate shape of a mold via hot slumping technology. The replication concept is advantageous for making large optics composed of many identical or similar segments. After the hot slumping, the shape error residual on the optical surface is addressed by applying a deterministic sub-aperture technology as computer-controlled bonnet polishing and/or ion beam figuring. Here we focus on the bonnet polishing case, during which the thin, deformable substrate of glass is temporary stiffened by a removable holder. In this paper, we report on the results so far achieved on a 130 mm glass shell case study.
High-energy astrophysics is a relatively young scientific field, made possible by space-borne telescopes. During the half-century history of x-ray astronomy, the sensitivity of focusing x-ray telescopes-through finer angular resolution and increased effective area-has improved by a factor of a 100 million. This technological advance has enabled numerous exciting discoveries and increasingly detailed study of the high-energy universe-including accreting (stellar-mass and super-massive) black holes, accreting and isolated neutron stars, pulsar-wind nebulae, shocked plasma in supernova remnants, and hot thermal plasma in clusters of galaxies. As the largest structures in the universe, galaxy clusters constitute a unique laboratory for measuring the gravitational effects of dark matter and of dark energy. Here, we review the history of high-resolution x-ray telescopes and highlight some of the scientific results enabled by these telescopes. Next, we describe the planned next-generation x-ray-astronomy facility-the International X-ray Observatory (IXO). We conclude with an overview of a concept for the next next-generation facility-Generation X. The scientific objectives of such a mission will require very large areas (about 10000 m2) of highly-nested lightweight grazing-incidence mirrors with exceptional (about 0.1-arcsecond) angular resolution. Achieving this angular resolution with lightweight mirrors will likely require on-orbit adjustment of alignment and figure.
Multilayer X-ray mirrors consist of a coating of a large number of alternate layers of high Z and low Z materials with a typical thickness of 10-100 Angstrom, on a suitable substrate. Such coatings play an important role in enhancing the reflectivity of X-ray mirrors by allowing reflections at angles much larger than the critical angle of X-ray reflection for the given materials. Coating with an equal thickness of each bilayer enhances the reflectivity at discrete energies, satisfying Bragg condition. However, by systematically varying the bilayer thickness in the multilayer stack, it is possible to design X-ray mirrors having enhanced reflectivity over a broad energy range. One of the most important applications of such a depth graded multilayer mirror is to realize hard X-ray telescopes for astronomical purposes. Design of such multilayer X-ray mirrors and their characterization with X-ray reflectivity measurements require appropriate software tools. We have initiated the development of hard X-ray optics for future Indian X-ray astronomical missions, and in this context, we have developed a program, DarpanX, to calculate X-ray reflectivity for single and multilayer mirrors. It can be used as a stand-alone tool for designing multilayer mirrors with required characteristics. But more importantly, it has been implemented as a local model for the popular X-ray spectral fitting program, XSPEC, and thus can be used for accurate fitting of the experimentally measured X-ray reflectivity data. DarpanX is implemented as a Python 3 module, and an API is provided to access the underlying algorithms. Here we present details of DarpanX implementation and its validation for different type multilayer structures. We also demonstrate the model fitting capability of DarpanX for experimental X-ray reflectivity measurements of single and multilayer samples.
Both the interplanetary space and the Earth magnetosphere are populated by low energy ($leq300$ keV) protons that are potentially able to scatter on the reflecting surface of Wolter-I optics of X-ray focusing telescopes and reach the focal plane. Thi s phenomenon, depending on the X-ray instrumentation, can dramatically increase the background level, reducing the sensitivity or, in the most extreme cases, compromising the observation itself. The use of a magnetic diverter, deflecting protons away from the field of view, requires a detailed characterization of their angular and energy distribution when exiting the mirror. We present the first end-to-end Geant4 simulation of proton scattering by X-ray optics and the consequent interaction with the diverter field and the X-ray detector assembly, selecting the ATHENA Wide Field Imager as a case study for the evaluation of the residual soft proton induced background. We obtain that, in absence of a magnetic diverter, protons are indeed funneled towards the focal plane, with a focused Non X-ray Background well above the level required by ATHENA science objectives ($5times10^{-4}$ counts cm$^{-2}$ s$^{-1}$ keV$^{-1}$), for all the plasma regimes encountered in both L1 and L2 orbits. These results set the proton diverter as a mandatory shielding system on board the ATHENA mission and all high throughput X-ray telescopes operating in the interplanetary space. For a magnetic field computed to deflect 99% of the protons that would otherwise reach the WFI, Geant4 simulations show that this configuration, in the assumption of a uniform field, would efficiently shield the focal plane, yielding a residual background level of the order or below the requirement.
Astronomical imaging with micro-arcsecond ($mu$as) angular resolution could enable breakthrough scientific discoveries. Previously-proposed $mu$as X-ray imager designs have been interferometers with limited effective collecting area. Here we describe X-ray telescopes achieving diffraction-limited performance over a wide energy band with large effective area, employing a nested-shell architecture with grazing-incidence mirrors, while matching the optical path lengths between all shells. We present two compact nested-shell Wolter Type 2 grazing-incidence telescope designs for diffraction-limited X-ray imaging: a micro-arcsecond telescope design with 14 $mu$as angular resolution and 2.9 m$^2$ of effective area at 5 keV photon energy ($lambda$=0.25 nm), and a smaller milli-arcsecond telescope design with 525 $mu$as resolution and 645 cm$^2$ effective area at 1 keV ($lambda$=1.24 nm). We describe how to match the optical path lengths between all shells in a compact mirror assembly, and investigate chromatic and off-axis aberrations. Chromatic aberration results from total external reflection off of mirror surfaces, and we greatly mitigate its effects by slightly adjusting the path lengths in each mirror shell. The mirror surface height error and alignment requirements for diffraction-limited performance are challenging but arguably achieveable in the coming decades. Since the focal ratio for a diffraction-limited X-ray telescope is extremely large ($f/D$~10$^5$), the only important off-axis aberration is curvature of field, so a 1 arcsecond field of view is feasible with a flat detector. The detector must fly in formation with the mirror assembly, but relative positioning tolerances are on the order of 1 m over a distance of some tens to hundreds of kilometers. While there are many challenges to achieving diffraction-limited X-ray imaging, we did not find any fundamental barriers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا