ﻻ يوجد ملخص باللغة العربية
Both the interplanetary space and the Earth magnetosphere are populated by low energy ($leq300$ keV) protons that are potentially able to scatter on the reflecting surface of Wolter-I optics of X-ray focusing telescopes and reach the focal plane. This phenomenon, depending on the X-ray instrumentation, can dramatically increase the background level, reducing the sensitivity or, in the most extreme cases, compromising the observation itself. The use of a magnetic diverter, deflecting protons away from the field of view, requires a detailed characterization of their angular and energy distribution when exiting the mirror. We present the first end-to-end Geant4 simulation of proton scattering by X-ray optics and the consequent interaction with the diverter field and the X-ray detector assembly, selecting the ATHENA Wide Field Imager as a case study for the evaluation of the residual soft proton induced background. We obtain that, in absence of a magnetic diverter, protons are indeed funneled towards the focal plane, with a focused Non X-ray Background well above the level required by ATHENA science objectives ($5times10^{-4}$ counts cm$^{-2}$ s$^{-1}$ keV$^{-1}$), for all the plasma regimes encountered in both L1 and L2 orbits. These results set the proton diverter as a mandatory shielding system on board the ATHENA mission and all high throughput X-ray telescopes operating in the interplanetary space. For a magnetic field computed to deflect 99% of the protons that would otherwise reach the WFI, Geant4 simulations show that this configuration, in the assumption of a uniform field, would efficiently shield the focal plane, yielding a residual background level of the order or below the requirement.
The ATHENA X-ray Observatory-IXO is a planned multinational orbiting X-ray observatory with a focal length of 11.5m. ATHENA aims to perform pointed observations in an energy range from 0.1 keV to 15 keV with high sensitivity. For high spatial and tim
The Wide Field Imager (WFI) is one of the two scientific instruments proposed for the Athena+ X-ray observatory. It will provide imaging in the 0.1-15 keV band over a wide field, simultaneously with spectrally and time-resolved photon counting. The i
The X-ray Integral Field Unit (X-IFU) is the high resolution X-ray spectrometer of the ESA Athena X-ray observatory. Over a field of view of 5 equivalent diameter, it will deliver X-ray spectra from 0.2 to 12 keV with a spectral resolution of 2.5 eV
Wide-Field MAXI (WF-MAXI: Wide-Field Monitor of All-sky X-ray Image) is a proposed mission to detect and localize X-ray transients including electro-magnetic counterparts of gravitational-wave events such as gamma-ray bursts and supernovae etc., whic
The Soft X-ray Imager (SXI) is one of the three instruments on board EXIST, a multi-wavelength observatory in charge of performing a global survey of the sky in hard X-rays searching for Super-massive Black Holes (Grindlay & Natalucci, these Proceedi