ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure tuning of superconductivity independent of disorder in Tl$_{2}$Ba$_{2}$CaCu$_{2}$O$_{8+delta}$

154   0   0.0 ( 0 )
 نشر من قبل Xiao-Jia Chen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Varying the superconducting transition temperature over a large scale of a cuprate superconductor is a necessary step for identifying the unsettled mechanism of superconductivity. Chemical doping or element substitution has been proven to be effective but also brings about lattice disorder. Such disorder can completely destroy superconductivity even at a fixed doping level. Pressure has been thought to be the most clean method for tuning superconductivity. However, pressure-induced increase of disorder was recognized from recent experiments. By choosing a disordered Tl$_{2}$Ba$_{2}$CaCu$_{2}$O$_{8+delta}$ at the optimal doping, we perform single-crystal x-ray diffraction and magnetic susceptibility measurements at high pressures. The obtained structural data provides evidence for the robust feature for the disorder of this material in the pressure range studied. This feature ensures the pressure effects on superconductivity distinguishable from the disorder. The derived parabolic-like behavior of the transition temperature with pressure up to near 30 GPa, having a maximum around 7 GPa, offers a platform for testing any realistic theoretical models in a nearly constant disorder environment. Such a behavior can be understood when considering the carrier concentration and the pairing interaction strength as two pressure intrinsic variables.



قيم البحث

اقرأ أيضاً

Single atom manipulation within doped correlated electron systems would be highly beneficial to disentangle the influence of dopants, structural defects and crystallographic characteristics on their local electronic states. Unfortunately, their high diffusion barrier prevents conventional manipulation techniques. Here, we demonstrate the possibility to reversibly manipulate select sites in the optimally doped high temperature superconductor Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+x}$ using the local electric field of the tip. We show that upon shifting individual Bi atoms at the surface, the spectral gap associated with superconductivity is seen to reversibly change by as much as 15 meV (~5% of the total gap size). Our toy model that captures all observed characteristics suggests the field induces lateral movement of point-like objects that create a local pairing potential in the CuO2 plane.
160 - Jing Liu , Lin Zhao , Qiang Gao 2019
High-quality Bi$_{2-x}$Pb$_{x}$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi2212) single crystals have been successfully grown by the traveling solvent floating zone technique with a wide range of Pb substitution ($x=0-0.8$). The samples are characterized by trans mission electron microscope (TEM) and measured by high resolution laser-based angle-resolved photoemission spectroscopy (ARPES) with different photon energies. A systematic evolution of the electronic structure and superstructure with Pb substitution has been revealed for the first time. The superstructure shows a significant change with Pb substitution and the incommensurate modulation vector ($textbf{Q}$) decreases with increasing Pb substitution. In the meantime, the superstructure intensity from ARPES measurements also decreases dramatically with increasing Pb concentration. The superstructure in Bi2212 can be effectively suppressed by Pb substitution and it nearly disappears with a Pb substitution of $x=0.8$. We also find that the superstructure bands in ARPES measurements depend sensitively on the photon energy of lasers used; they can become even stronger than the main band when using a laser photon energy of 10.897 eV. These results provide important information on the origin of the incommensurate superstructure and its control and suppression in bismuth-based high temperature superconductors.
Anomalously high and sharp peaks in the conductance of intrinsic Josephson junctions in Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8+delta}$ (Bi2212) mesas have been universally interpreted as superconducting energy gaps, but here we show they are a result of hea ting. This interpretation follows from a direct comparison to the equilibrium gap, $mathit Delta$, measured in break junctions on similar Bi2212 crystals. As the dissipated power increases with a greater number of junctions in the mesa, the conductance peak abruptly sharpens and its voltage decreases to well below 2$mathit Delta$. This sharpening, found in our experimental data, defies conventional intuition of heating effects on tunneling spectra, but it can be understood as an instability into a nonequilibrium two-phase coexistent state. The measured peak positions occur accurately within the voltage range that an S-shaped backbending is found in the {it calculated} current-voltage curves for spatially {it uniform} self-heating and that S-shape implies the potential for the uniform state to be unstable.
Scanning Hall probe and local Hall magnetometry measurements have been used to investigate flux distributions in large mesoscopic superconducting disks with sizes that lie near the crossover between the bulk and mesoscopic vortex regimes. Results obt ained by directly mapping the magnetic induction profiles of the disks at different applied fields can be quite successfully fitted to analytic models which assume a continuous distribution of flux in the sample. At low fields, however, we do observe clear signatures of the underlying discrete vortex structure and can resolve the characteristic mesoscopic compression of vortex clusters in increasing magnetic fields. Even at higher fields, where single vortex resolution is lost, we are still able to track configurational changes in the vortex patterns, since competing vortex orders impose unmistakable signatures on local magnetisation curves as a function of the applied field. Our observations are in excellent agreement with molecular dynamics numerical simulations which lead us to a natural definition of the lengthscale for the crossover between discrete and continuum behaviours in our system.
We study the effect of quenched disorder in the thermodynamic magnitudes entailed in the first-order vortex phase transition of the extremely layered Bi$_{2}$Sr$_{2}$CaCu$_{2}$O$_{8 + delta}$ compound. We track the temperature-evolution of the enthal py and the entropy-jump at the vortex solidification transition by means of AC local magnetic measurements. Quenched disorder is introduced to the pristine samples by means of heavy-ion irradiation with Pb and Xe producing a random columnar-track pins distribution with different densities (matching field $B_{Phi}$). In contrast with previous magneto-optical reports, we find that the first-order phase transition persists for samples with $B_{Phi}$ up to 100,Gauss. For very low densities of quenched disorder (pristine samples), the evolution of the thermodynamic properties can be satisfactorily explained considering a negligible effect of pinning and only electromagnetic coupling between pancake vortices lying in adjacent CuO planes. This description is not satisfactory on increasing magnitude of quenched disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا