ﻻ يوجد ملخص باللغة العربية
We experimentally demonstrate the existence of non dispersive solitary waves associated with a 2$pi$ phase rotation in a strongly multimode ring semiconductor laser with coherent forcing. Similarly to Bloch domain walls, such structures host a chiral charge. The numerical simulations based on a set of effective Maxwell-Bloch equations support the experimental evidence that only one sign of chiral charge is stable, which strongly affects the motion of the phase solitons. Furthermore, the reduction of the model to a modified Ginzburg Landau equation with forcing demonstrates the generality of these phenomena and exposes the impact of the lack of parity symmetry in propagative optical systems.
We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These solitons arise as cycles in the polarization orientat
We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based on spatially graded dissipation, leading to distributed Kerr-lens mode-locking. Our analysis involves solutions of a generalized dissipative
Nonlinear properties of a multi-layer stack of graphene sheets are studied. It is predicted that such a structure may support dissipative plasmon-solitons generated and supported by an external laser radiation. Novel nonlinear equations describing sp
This chapter describes the discovery and stable generation of temporal dissipative Kerr solitons in continuous-wave (CW) laser driven optical microresonators. The experimental signatures as well as the temporal and spectral characteristics of this cl
Dissipative solitons are self-localized structures resulting from a double balance between dispersion and nonlinearity as well as dissipation and a driving force. They occur in a wide variety of fields ranging from optics, hydrodynamics to chemistry