ﻻ يوجد ملخص باللغة العربية
We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These solitons arise as cycles in the polarization orientation, leaving the total intensity constant. When the cavity round-trip is much longer than their duration, several independent solitons as well as bound states (molecules) may be hosted in the cavity. All these solutions coexist together and with the background solution, i.e. the solution with zero soliton. The theoretical proof of localization is given by the analysis of the Floquet exponents. Finally, we reduce the dynamics to a single delayed equation for the polarization orientation allowing interpreting the vectorial solitons as polarization kinks.
In this paper we study the formation and dynamics of self-propelled cavity solitons (CSs) in a model for vertical cavity surface-emitting lasers (VCSELs) subjected to external frequency selective feedback (FSF), and build their bifurcation diagram fo
The properties of vector vortex beams in vertical-cavity-surface emitting lasers with frequency-selective feedback is investigated. They are interpreted as high-order vortex solitons with a spatially non-uniform, but locally linear polarization state
Temporal Localized States (TLSs) are individually addressable structures traveling in optical resonators. They can be used as bits of information and to generate frequency combs with tunable spectral density. We show that a pair of specially designed
The spontaneous emergence of vector vortex beams with non-uniform polarization distribution is reported in a vertical-cavity surface-emitting laser (VCSEL) with frequency-selective feedback. Antivortices with a hyperbolic polarization structure and r
Vertical cavity surface emitting lasers (VCSELs) have made indispensable contributions to the development of modern optoelectronic technologies. However, arbitrary beam shaping of VCSELs within a compact system still remains inaccessible till now. Th