ﻻ يوجد ملخص باللغة العربية
We introduce the notion of additive units and roots of a unit in a spatial product system. The set of all roots of any unit forms a Hilbert space and its dimension is the same as the index of the product system. We show that a unit and all of its roots generate the type I part of the product system. Using properties of roots, we also provide an alternative proof of the Powers problem that the cocycle conjugacy class of Powers sum is independent of the choice of intertwining isometries. In the last section, we introduce the notion of cluster of a product subsystem and establish its connection with random sets in the sense of Tsirelson and Liebscher.
We introduce the notion of additive units, or `addits, of a pointed Arveson system, and demonstrate their usefulness through several applications. By a pointed Arveson system we mean a spatial Arveson system with a fixed normalised reference unit. We
Starting with an additive process $(Y_t)_{tgeq0}$, it is in certain cases possible to construct an adjoint process $(X_t)_{tgeq0}$ which is itself additive. Moreover, assuming that the transition densities of $(Y_t)_{tgeq0}$ are controlled by a natur
A Banach space operator $Tin B(X)$ is left polaroid if for each $lambdainhbox{iso}sigma_a(T)$ there is an integer $d(lambda)$ such that asc $(T-lambda)=d(lambda)<infty$ and $(T-lambda)^{d(lambda)+1}X$ is closed; $T$ is finitely left polaroid if asc $
Let $X$ and $Y$ be Banach spaces, let $mathcal{A}(X)$ stands for the algebra of approximable operators on $X$, and let $Pcolonmathcal{A}(X)to Y$ be an orthogonally additive, continuous $n$-homogeneous polynomial. If $X^*$ has the bounded approximatio
The product of a Hermitian matrix and a positive semidefinite matrix has only real eigenvalues. We present bounds for sums of eigenvalues of such a product.