ترغب بنشر مسار تعليمي؟ اضغط هنا

On Adjoint Additive Processes

61   0   0.0 ( 0 )
 نشر من قبل Kristian Evans
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Starting with an additive process $(Y_t)_{tgeq0}$, it is in certain cases possible to construct an adjoint process $(X_t)_{tgeq0}$ which is itself additive. Moreover, assuming that the transition densities of $(Y_t)_{tgeq0}$ are controlled by a natural pair of metrics $mathrm{d}_{psi,t}$ and $delta_{psi,t}$, we can prove that the transition densities of $(X_t)_{tgeq0}$ are controlled by the metrics $delta_{psi,1/t}$ replacing $mathrm{d}_{psi,t}$ and $mathrm{d}_{psi,1/t}$ replacing $delta_{psi,t}$.


قيم البحث

اقرأ أيضاً

163 - Seppo Hassi , Sergii Kuzhel 2010
The paper is devoted to a development of the theory of self-adjoint operators in Krein spaces (J-self-adjoint operators) involving some additional properties arising from the existence of C-symmetries. The main attention is paid to the recent notion of stable C-symmetry for J-self-adjoint extensions of a symmetric operator S. The general results are specialized further by studying in detail the case where S has defect numbers <2,2>.
Let $X$ and $Y$ be Banach spaces, let $mathcal{A}(X)$ stands for the algebra of approximable operators on $X$, and let $Pcolonmathcal{A}(X)to Y$ be an orthogonally additive, continuous $n$-homogeneous polynomial. If $X^*$ has the bounded approximatio n property, then we show that there exists a unique continuous linear map $Phicolonmathcal{A}(X)to Y$ such that $P(T)=Phi(T^n)$ for each $Tinmathcal{A}(X)$.
Let $J$ and $R$ be anti-commuting fundamental symmetries in a Hilbert space $mathfrak{H}$. The operators $J$ and $R$ can be interpreted as basis (generating) elements of the complex Clifford algebra ${mathcal C}l_2(J,R):={span}{I, J, R, iJR}$. An arb itrary non-trivial fundamental symmetry from ${mathcal C}l_2(J,R)$ is determined by the formula $J_{vec{alpha}}=alpha_{1}J+alpha_{2}R+alpha_{3}iJR$, where ${vec{alpha}}inmathbb{S}^2$. Let $S$ be a symmetric operator that commutes with ${mathcal C}l_2(J,R)$. The purpose of this paper is to study the sets $Sigma_{{J_{vec{alpha}}}}$ ($forall{vec{alpha}}inmathbb{S}^2$) of self-adjoint extensions of $S$ in Krein spaces generated by fundamental symmetries ${{J_{vec{alpha}}}}$ (${{J_{vec{alpha}}}}$-self-adjoint extensions). We show that the sets $Sigma_{{J_{vec{alpha}}}}$ and $Sigma_{{J_{vec{beta}}}}$ are unitarily equivalent for different ${vec{alpha}}, {vec{beta}}inmathbb{S}^2$ and describe in detail the structure of operators $AinSigma_{{J_{vec{alpha}}}}$ with empty resolvent set.
We compute the deficiency spaces of operators of the form $H_A{hat{otimes}} I + I{hat{otimes}} H_B$, for symmetric $H_A$ and self-adjoint $H_B$. This enables us to construct self-adjoint extensions (if they exist) by means of von Neumanns theory. The structure of the deficiency spaces for this case was asserted already by Ibort, Marmo and Perez-Pardo, but only proven under the restriction of $H_B$ having discrete, non-degenerate spectrum.
Let $G$ be a compact group, let $X$ be a Banach space, and let $Pcolon L^1(G)to X$ be an orthogonally additive, continuous $n$-homogeneous polynomial. Then we show that there exists a unique continuous linear map $Phicolon L^1(G)to X$ such that $P(f) =Phi bigl(faststackrel{n}{cdots}ast f bigr)$ for each $fin L^1(G)$. We also seek analogues of this result about $L^1(G)$ for various other convolution algebras, including $L^p(G)$, for $1< pleinfty$, and $C(G)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا