ﻻ يوجد ملخص باللغة العربية
Let $X$ and $Y$ be Banach spaces, let $mathcal{A}(X)$ stands for the algebra of approximable operators on $X$, and let $Pcolonmathcal{A}(X)to Y$ be an orthogonally additive, continuous $n$-homogeneous polynomial. If $X^*$ has the bounded approximation property, then we show that there exists a unique continuous linear map $Phicolonmathcal{A}(X)to Y$ such that $P(T)=Phi(T^n)$ for each $Tinmathcal{A}(X)$.
Let $G$ be a compact group, let $X$ be a Banach space, and let $Pcolon L^1(G)to X$ be an orthogonally additive, continuous $n$-homogeneous polynomial. Then we show that there exists a unique continuous linear map $Phicolon L^1(G)to X$ such that $P(f)
We give a necessary and sufficient condition for amenability of the Banach algebra of approximable operators on a Banach space. We further investigate the relationship between amenability of this algebra and factorization of operators, strengthening
Let $mathcal{M}$ be a von Neumann algebra with a normal semifinite faithful trace $tau$. We prove that every continuous $m$-homogeneous polynomial $P$ from $L^p(mathcal{M},tau)$, with $0<p<infty$, into each topological linear space $X$ with the prope
Given a complex Banach space $X$ and a joint spectrum for complex solvable finite dimensional Lie algebras of operators defined on $X$, we extend this joint spectrum to quasi-solvable Lie algebras of operators, and we prove the main spectral properti
Starting with an additive process $(Y_t)_{tgeq0}$, it is in certain cases possible to construct an adjoint process $(X_t)_{tgeq0}$ which is itself additive. Moreover, assuming that the transition densities of $(Y_t)_{tgeq0}$ are controlled by a natur