ترغب بنشر مسار تعليمي؟ اضغط هنا

A Consistent Picture Emerges: A Compact X-ray Continuum Emission Region in the Gravitationally Lensed Quasar SDSS J0924+0219

168   0   0.0 ( 0 )
 نشر من قبل Chelsea L MacLeod
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089A) Hubble Space Telescope data, and high-cadence R-band (rest-frame 2770A) monitoring spanning eleven years. Our joint analysis provides robust constraints on the extent of the X-ray continuum emission region and the projected area of the accretion disk. The best-fit half-light radius of the soft X-ray continuum emission region is between 5x10^13 and 10^15 cm, and we find an upper limit of 10^15 cm for the hard X-rays. The best-fit soft-band size is about 13 times smaller than the optical size, and roughly 7 GM_BH/c^2 for a 2.8x10^8 M_sol black hole, similar to the results for other systems. We find that the UV emitting region falls in between the optical and X-ray emitting regions at 10^14 cm < r_1/2,UV < 3x10^15 cm. Finally, the optical size is significantly larger, by 1.5*sigma, than the theoretical thin-disk estimate based on the observed, magnification-corrected I-band flux, suggesting a shallower temperature profile than expected for a standard disk.



قيم البحث

اقرأ أيضاً

We present Karl G. Jansky Very Large Array (VLA) and Atacama Large Millimetre Array (ALMA) observations of SDSS J0924+0219, a z = 1.524 radio-quiet lensed quasar with an intrinsic radio flux density of about 3 micro-Jy. The four lensed images are cle arly detected in the radio continuum and the CO(5-4) line, whose centroid is at z = 1.5254 +/- 0.0001, with a marginal detection in the submillimetre continuum. The molecular gas displays ordered motion, in a structure approximately 1--2.5 kpc in physical extent, with typical velocities of 50-100 km/s. Our results are consistent with the radio emission being emitted from the same region, but not with a point source of radio emission. SDSS J0924+0219 shows an extreme anomaly in the flux ratios of the two merging images in the optical continuum and broad emission lines, suggesting the influence of microlensing by stars in the lensing galaxy. We find the flux ratio in the radio, submillimetre continuum and CO lines to be slightly greater than 1 but much less than that in the optical, which can be reproduced with a smooth galaxy mass model and an extended source. Our results, supported by a microlensing simulation, suggest that the most likely explanation for the optical flux anomaly is indeed microlensing.
We present the result of Subaru Telescope multi-band adaptive optics observations of the complex gravitationally lensed quasar SDSS J1405+0959, which is produced by two lensing galaxies. These observations reveal dramatically enhanced morphological d etail, leading to the discovery of an additional object 0. 26 from the secondary lensing galaxy, as well as three collinear clumps located in between the two lensing galaxies. The new object is likely to be the third quasar image, although the possibility that it is a galaxy cannot be entirely excluded. If confirmed via future observations, it would be the first three image lensed quasar produced by two galaxy lenses. In either case, we show based on gravitational lensing models and photometric redshift that the collinear clumps represent merging images of a portion of the quasar host galaxy, with a magnification factor of 15 - 20, depending on the model.
We report the discovery of 13 confirmed two-image quasar lenses from a systematic search for gravitationally lensed quasars in the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). We adopted a methodology similar to that used in the SDSS Quas ar Lens Search (SQLS). In addition to the confirmed lenses, we report 11 quasar pairs with small angular separations ($lesssim$2) confirmed from our spectroscopy, which are either projected pairs, physical binaries, or possibly quasar lens systems whose lens galaxies have not yet been detected. The newly discovered quasar lens system, SDSS J1452+4224 at zs$approx$4.8 is one of the highest redshift multiply imaged quasars found to date. Furthermore, we have over 50 good lens candidates yet to be followed up. Owing to the heterogeneous selection of BOSS quasars, the lens sample presented here does not have a well-defined selection function.
We study the geometry and the internal structure of the outflowing wind from the accretion disk of a quasar by observing multiple sightlines with the aid of strong gravitational lensing. Using Subaru/HDS, we performed high-resolution ($R$ $sim$ 36,00 0) spectroscopic observations of images A and B of the gravitationally lensed quasar SDSS J1029+2623 (at $z_{em}$ $sim$ 2.197) whose image separation angle, $theta$ $sim$ 22$^{primeprime}!!$.5, is the largest among those discovered so far. We confirm that the difference in absorption profiles in the images A and B discovered by Misawa et al. (2013) remains unchanged since 2010, implying the difference is not due to time variability of the absorption profiles over the delay between the images, $Delta t$ $sim$ 744 days, but rather due to differences along the sightlines. We also discovered time variation of C IV absorption strength in both images A and B, due to change of ionization condition. If a typical absorbers size is smaller than its distance from the flux source by more than five orders of magnitude, it should be possible to detect sightline variations among images of other smaller separation, galaxy-scale gravitationally lensed quasars.
The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with the image separation of 0.833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Sear ch, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2-meter telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy $sim 4$ apart from the lensing galaxy is likely to affect the lens potential.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا