ﻻ يوجد ملخص باللغة العربية
The quasar SDSS J133401.39+331534.3 at z = 2.426 is found to be a two-image gravitationally lensed quasar with the image separation of 0.833. The object is first identified as a lensed quasar candidate in the Sloan Digital Sky Survey Quasar Lens Search, and then confirmed as a lensed system from follow-up observations at the Subaru and University of Hawaii 2.2-meter telescopes. We estimate the redshift of the lensing galaxy to be 0.557 based on absorption lines in the quasar spectra as well as the color of the galaxy. In particular, we observe the system with the Subaru Telescope AO188 adaptive optics with laser guide star, in order to derive accurate astrometry, which well demonstrates the usefulness of the laser guide star adaptive optics imaging for studying strong lens systems. Our mass modeling with improved astrometry implies that a nearby bright galaxy $sim 4$ apart from the lensing galaxy is likely to affect the lens potential.
We report the discovery of a gravitationally lensed quasar resulting from our survey for lenses in the southern sky. Radio images of PMN J1632-0033 with the VLA and ATCA exhibit two compact, flat-spectrum components with separation 1.47 and flux dens
Bright gravitationally lensed galaxies provide our most detailed view of galaxies at high redshift. Yet as a result of the small number of ultra-bright z~2 lensed systems with confirmed redshifts, most detailed spectroscopic studies have been limited
We report the discovery of a new two-image gravitationally lensed quasar, SDSS J024634.11-082536.2 (SDSS J0246-0825). This object was selected as a lensed quasar candidate from the Sloan Digital Sky Survey (SDSS) by the same algorithm that was used t
We present the result of Subaru Telescope multi-band adaptive optics observations of the complex gravitationally lensed quasar SDSS J1405+0959, which is produced by two lensing galaxies. These observations reveal dramatically enhanced morphological d
We present 426 epochs of optical monitoring data spanning 1000 days from December 2003 to June 2006 for the gravitationally lensed quasar SDSS J1004+4112. The time delay between the A and B images is 38.4+/-2.0 days in the expected sense that B leads