ﻻ يوجد ملخص باللغة العربية
We present Karl G. Jansky Very Large Array (VLA) and Atacama Large Millimetre Array (ALMA) observations of SDSS J0924+0219, a z = 1.524 radio-quiet lensed quasar with an intrinsic radio flux density of about 3 micro-Jy. The four lensed images are clearly detected in the radio continuum and the CO(5-4) line, whose centroid is at z = 1.5254 +/- 0.0001, with a marginal detection in the submillimetre continuum. The molecular gas displays ordered motion, in a structure approximately 1--2.5 kpc in physical extent, with typical velocities of 50-100 km/s. Our results are consistent with the radio emission being emitted from the same region, but not with a point source of radio emission. SDSS J0924+0219 shows an extreme anomaly in the flux ratios of the two merging images in the optical continuum and broad emission lines, suggesting the influence of microlensing by stars in the lensing galaxy. We find the flux ratio in the radio, submillimetre continuum and CO lines to be slightly greater than 1 but much less than that in the optical, which can be reproduced with a smooth galaxy mass model and an extended source. Our results, supported by a microlensing simulation, suggest that the most likely explanation for the optical flux anomaly is indeed microlensing.
We present e-MERLIN and EVN observations which reveal unambiguous jet activity within radio quiet quasar HS~0810+2554. With an intrinsic flux density of 880~nJy, this is the faintest radio source ever imaged. The findings present new evidence against
We analyze the optical, UV, and X-ray microlensing variability of the lensed quasar SDSS J0924+0219 using six epochs of Chandra data in two energy bands (spanning 0.4-8.0 keV, or 1-20 keV in the quasar rest frame), 10 epochs of F275W (rest-frame 1089
We report the discovery of a radio quiet type 2 quasar (SDSS J165315.06+234943.0 nicknamed the Beetle at z=0.103) with unambiguous evidence for active galactic nucleus (AGN) radio induced feedback acting across a total extension of ~46 kpc and up to
We present 1-2 GHz Very Large Array A-configuration continuum observations on the highest redshift quasar known to date, the $z=7.085$ quasar ULAS J112001.48+064124.3. The results show no radio continuum emission at the optical position of the quasar
We present multi-frequency (1-8 GHz) VLA data, combined with VIMOS IFU data and HST imaging, of a z=0.085 radio-quiet type 2 quasar (with L(1.4GHz)~5e23 W/Hz and L(AGN)~2e45 erg/s). Due to the morphology of its emission-line region, the target (J1430