ترغب بنشر مسار تعليمي؟ اضغط هنا

Heating and cooling of the neutral ISM in the NGC4736 circumnuclear ring

112   0   0.0 ( 0 )
 نشر من قبل Tessel van der Laan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locations. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the `pearls on a string and `popcorn paradigms. In this paper, we use new Herschel PACS observations, obtained as part of the KINGFISH Open Time Key Program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC4736. By comparing spatially resolved estimates of the stellar FUV flux available for heating, with the gas and dust cooling derived from the FIR continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC4736.



قيم البحث

اقرأ أيضاً

165 - P. Beirao , L. Armus , G. Helou 2012
NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar and an active nucleus. We present a detailed study of the spatial variation of the far infrared (FIR) [CII]158um and [OI]63um lines and mid-inf rared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS, and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158um+[OI]63um)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7um PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158{mu}m/PAH(5.5 - 14um) is found. PAHs in the ring are responsible for a factor of two more [CII]158um and [OI]63um emission per unit mass than PAHs in the Enuc S. SED modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high intensity photodissociation regions (PDRs), in which case G0 ~ 10^2.3 and nH ~ 10^3.5 cm^-3 in the ring. For these values of G0 and nH PDR models cannot reproduce the observed H2 emission. Much of the the H2 emission in the starburst ring could come from warm regions in the diffuse ISM that are heated by turbulent dissipation or shocks.
We report an astrochemical study on the evolution of interstellar molecular clouds and consequent star formation in the center of the barred spiral galaxy M83. We used the Atacama Large Millimeter/submillimeter Array (ALMA) to image molecular species indicative of shocks (SiO, CH$_3$OH), dense cores (N$_2$H$^+$), and photodissociation regions (CN and CCH), as well as a radio recombination line (H41$alpha$) tracing active star-forming regions. M83 has a circumnuclear gas ring that is joined at two areas by gas streams from the leading-edge gas lanes on the bar. We found elevated abundances of the shock and dense-core tracers in one of the orbit-intersecting areas, and found peaks of CN and H41$alpha$ downstream. At the other orbit-intersection area, we found similar enhancement of the shock tracers, but less variation of other tracers, and no sign of active star formation in the stream. We propose that the observed chemical variation or lack of it is due to the presence or absence of collision-induced evolution of molecular clouds and induced star formation. This work presents the most clear case of the chemical evolution in the circumnuclear rings of barred galaxies, thanks to the ALMA resolution and sensitivity.
We present the first galactic-scale model of the gas dynamics of the prototype barred Seyfert 1 galaxy NGC1097. We use large scale FaNTOmM Fabry-Perot interferometric data covering the entire galactic disc and combine the distribution and kinematics maps with high resolution two-dimensional spectroscopy from the Gemini telescope. We build a dynamical model for the gravitational potential by applying the analytic solution to the equations of motion, within the epicyclic approximation. Our model reproduces all the significant kinematic and structural signatures of this galaxy. We find that the primary bar is 7.9+/-0.6 kpc long and has a pattern speed of 36 +/- 2 km s^-1 kpc^-1. This places the corotation radius at 8.6 +/-0.5 kpc, the outer Lindblad resonance at 14.9+/-0.9 kpc and two inner Lindblad resonances at 60+/-5 pc and 2.9+/-0.1 kpc. These derivations lead to a ratio of the corotation radius over bar length of 1.0--1.2, which is in agreement with the predictions of simulations for fast galaxy bars. Our model presents evidence that the circumnuclear ring in this galaxy is not located near any of the resonance radii in this galaxy. The ring might have once formed at the outer inner Lindblad resonance radius, and it has been migrating inward, toward the centre of the galactic gravitational potential.
The discrepancy between expected and observed cooling rates of X-ray emitting gas has led to the {it cooling flow problem} at the cores of clusters of galaxies. A variety of models have been proposed to model the observed X-ray spectra and resolve th e cooling flow problem, which involves heating the cold gas through different mechanisms. As a result, realistic models of X-ray spectra of galaxy clusters need to involve both heating {it and} cooling mechanisms. In this paper, we argue that the heating time-scale is set by the magnetohydrodynamic (MHD) turbulent viscous heating for the Intracluster plasma, parametrised by the Shakura-Sunyaev viscosity parameter, $alpha$. Using a cooling+heating flow model, we show that a value of $alphasimeq 0.05$ (with 10% scatter) provides improved fits to the X-ray spectra of cooling flow, while at the same time, predicting reasonable cooling efficiency, $epsilon_{cool} = 0.33^{+0.63}_{-0.15}$. Our inferred values for $alpha$ based on X-ray spectra are also in line with direct measurements of turbulent pressure in simulations and observations of galaxy clusters. This simple picture unifies astrophysical accretion, as a balance of MHD turbulent heating and cooling, across more than 16 orders of magnitudes in scale, from neutron stars to galaxy clusters.
We present the first HI spectral line images of the nearby, star-forming dwarf galaxies UGC11411 and UGC 8245, acquired as part of the Observing for University Classes program with the Karl G. Jansky Very Large Array (VLA). These low-resolution image s localize the HI gas and reveal the bulk kinematics of each system. Comparing with HST broadband and ground-based H{alpha} imaging, we find that the ongoing star formation in each galaxy is associated with the highest HI mass surface density regions. UGC 8245 has a much lower current star formation rate than UGC 11411, which harbors very high surface brightness H{alpha} emission in the inner disk and diffuse, lower surface brightness nebular gas that extends well beyond the stellar disk as traced by HST. We measure the dynamical masses of each galaxy and find that the halo of UGC 11411 is more than an order of magnitude more massive than the halo of UGC 8245, even though the HI and stellar masses of the sources are similar. We show that UGC8245 shares similar physical properties with other well-studied low-mass galaxies, while UGC11411 is more highly dark matter dominated. Both systems have negative peculiar velocities that are associated with a coherent flow of nearby galaxies at high supergalactic latitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا