ترغب بنشر مسار تعليمي؟ اضغط هنا

A Study of Heating and Cooling of the ISM in NGC 1097 with Herschel-PACS and Spitzer-IRS

166   0   0.0 ( 0 )
 نشر من قبل Pedro Beirao
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

NGC 1097 is a nearby Seyfert 1 galaxy with a bright circumnuclear starburst ring, a strong large-scale bar and an active nucleus. We present a detailed study of the spatial variation of the far infrared (FIR) [CII]158um and [OI]63um lines and mid-infrared H2 emission lines as tracers of gas cooling, and of the polycyclic aromatic hydrocarbon (PAH) bands as tracers of the photoelectric heating, using Herschel-PACS, and Spitzer-IRS infrared spectral maps. We focus on the nucleus and the ring, and two star forming regions (Enuc N and Enuc S). We estimated a photoelectric gas heating efficiency ([CII]158um+[OI]63um)/PAH in the ring about 50% lower than in Enuc N and S. The average 11.3/7.7um PAH ratio is also lower in the ring, which may suggest a larger fraction of ionized PAHs, but no clear correlation with [CII]158{mu}m/PAH(5.5 - 14um) is found. PAHs in the ring are responsible for a factor of two more [CII]158um and [OI]63um emission per unit mass than PAHs in the Enuc S. SED modeling indicates that at most 25% of the FIR power in the ring and Enuc S can come from high intensity photodissociation regions (PDRs), in which case G0 ~ 10^2.3 and nH ~ 10^3.5 cm^-3 in the ring. For these values of G0 and nH PDR models cannot reproduce the observed H2 emission. Much of the the H2 emission in the starburst ring could come from warm regions in the diffuse ISM that are heated by turbulent dissipation or shocks.



قيم البحث

اقرأ أيضاً

NGC 1097 is a nearby SBb galaxy with a Seyfert nucleus and a bright starburst ring. We study the physical properties of the interstellar medium (ISM) in the ring using spatially resolved far-infrared spectral maps of the circumnuclear starburst ring of NGC 1097, obtained with the PACS spectrometer on board the Herschel Space Telescope. In particular, we map the important ISM cooling and diagnostic emission lines of [OI] 63 $mu$m, [OIII] 88 $mu$m, [NII] 122 $mu$m, [CII] 158 $mu$m and [NII] 205 $mu$m. We observe that in the [OI] 63 $mu$m, [OIII] 88 $mu$m, and [NII] 122 $mu$m line maps, the emission is enhanced in clumps along the NE part of the ring. We observe evidence of rapid rotation in the circumnuclear ring, with a rotation velocity of ~220$ km s$^{-1}$ (inclination uncorrected) measured in all lines. The [OI] 63 $mu$m/[CII] 158 $mu$m ratio varies smoothly throughout the central region, and is enhanced on the northeastern part of the ring, which may indicate a stronger radiation field. This enhancement coincides with peaks in the [OI] 63 $mu$m and [OIII] 88 $mu$m maps. Variations of the [NII] 122 $mu$m/[NII] 205 $mu$m ratio correspond to a range in the ionized gas density between 150 and 400 cm$^{-3}$.
The manner in which gas accretes and orbits within circumnuclear rings has direct implications for the star formation process. In particular, gas may be compressed and shocked at the inflow points, resulting in bursts of star formation at these locat ions. Afterwards the gas and young stars move together through the ring. In addition, star formation may occur throughout the ring, if and when the gas reaches sufficient density to collapse under gravity. These two scenarios for star formation in rings are often referred to as the `pearls on a string and `popcorn paradigms. In this paper, we use new Herschel PACS observations, obtained as part of the KINGFISH Open Time Key Program, along with archival Spitzer and ground-based observations from the SINGS Legacy project, to investigate the heating and cooling of the interstellar medium in the nearby star-forming ring galaxy, NGC4736. By comparing spatially resolved estimates of the stellar FUV flux available for heating, with the gas and dust cooling derived from the FIR continuum and line emission, we show that while star formation is indeed dominant at the inflow points in NGC 4736, additional star formation is needed to balance the gas heating and cooling throughout the ring. This additional component most likely arises from the general increase in gas density in the ring over its lifetime. Our data provide strong evidence, therefore, for a combination of the two paradigms for star formation in the ring in NGC4736.
[Abridged] We present maps of the main cooling lines of the neutral atomic gas ([OI] at 63 and 145 micron and [CII] at 158 micron) and in the [OIII] 88 micron line of the starburst galaxy M82, carried out with the PACS spectrometer on board the Hersc hel satellite. By applying PDR modeling we derive maps of the main ISM physical parameters, including the [CII] optical depth, at unprecedented spatial resolution (~300 pc). We can clearly kinematically separate the disk from the outflow in all lines. The [CII] and [OI] distributions are consistent with PDR emission both in the disk and in the outflow. Surprisingly, in the outflow, the atomic and the ionized gas traced by the [OIII] line both have a deprojected velocity of ~75 km/s, very similar to the average velocity of the outflowing cold molecular gas (~ 100 km/s) and several times smaller than the outflowing material detected in Halpha (~ 600 km/s). This suggests that the cold molecular and neutral atomic gas and the ionized gas traced by the [OIII] 88 micron line are dynamically coupled to each other but decoupled from the Halpha emitting gas. We propose a scenario where cold clouds from the disk are entrained into the outflow by the winds where they likely evaporate, surviving as small, fairly dense cloudlets (n_Hsim 500-1000 cm^-3, G_0sim 500- 1000, T_gassim300 K). We show that the UV photons provided by the starburst are sufficient to excite the PDR shells around the molecular cores. The mass of the neutral atomic gas in the outflow is gtrsim 5-12x 10^7 M_sun to be compared with that of the molecular gas (3.3 x 10^8 M_sun) and of the Halpha emitting gas (5.8 x 10^6 M_sun). The mass loading factor, (dM/dt)/SFR, of the molecular plus neutral atomic gas in the outflow is ~ 2. Energy and momentum driven outflow models can explain the data equally well, if all the outflowing gas components are taken into account.
In the framework of the Water in Star-forming regions with Herschel (WISH) key program, maps in water lines of several outflows from young stars are being obtained, to study the water production in shocks and its role in the outflow cooling. This pap er reports the first results of this program, presenting a PACS map of the o-H2O 179 um transition obtained toward the young outflow L1157. The 179 um map is compared with those of other important shock tracers, and with previous single-pointing ISO, SWAS, and Odin water observations of the same source that allow us to constrain the water abundance and total cooling. Strong H2O peaks are localized on both shocked emission knots and the central source position. The H2O 179 um emission is spatially correlated with emission from H2 rotational lines, excited in shocks leading to a significant enhancement of the water abundance. Water emission peaks along the outflow also correlate with peaks of other shock-produced molecular species, such as SiO and NH3. A strong H2O peak is also observed at the location of the proto-star, where none of the other molecules have significant emission. The absolute 179 um intensity and its intensity ratio to the H2O 557 GHz line previously observed with Odin/SWAS indicate that the water emission originates in warm compact clumps, spatially unresolved by PACS, having a H2O abundance of the order of 10^-4. This testifies that the clumps have been heated for a time long enough to allow the conversion of almost all the available gas-phase oxygen into water. The total water cooling is ~10^-1 Lo, about 40% of the cooling due to H2 and 23% of the total energy released in shocks along the L1157 outflow.
The discrepancy between expected and observed cooling rates of X-ray emitting gas has led to the {it cooling flow problem} at the cores of clusters of galaxies. A variety of models have been proposed to model the observed X-ray spectra and resolve th e cooling flow problem, which involves heating the cold gas through different mechanisms. As a result, realistic models of X-ray spectra of galaxy clusters need to involve both heating {it and} cooling mechanisms. In this paper, we argue that the heating time-scale is set by the magnetohydrodynamic (MHD) turbulent viscous heating for the Intracluster plasma, parametrised by the Shakura-Sunyaev viscosity parameter, $alpha$. Using a cooling+heating flow model, we show that a value of $alphasimeq 0.05$ (with 10% scatter) provides improved fits to the X-ray spectra of cooling flow, while at the same time, predicting reasonable cooling efficiency, $epsilon_{cool} = 0.33^{+0.63}_{-0.15}$. Our inferred values for $alpha$ based on X-ray spectra are also in line with direct measurements of turbulent pressure in simulations and observations of galaxy clusters. This simple picture unifies astrophysical accretion, as a balance of MHD turbulent heating and cooling, across more than 16 orders of magnitudes in scale, from neutron stars to galaxy clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا