ﻻ يوجد ملخص باللغة العربية
We present the first galactic-scale model of the gas dynamics of the prototype barred Seyfert 1 galaxy NGC1097. We use large scale FaNTOmM Fabry-Perot interferometric data covering the entire galactic disc and combine the distribution and kinematics maps with high resolution two-dimensional spectroscopy from the Gemini telescope. We build a dynamical model for the gravitational potential by applying the analytic solution to the equations of motion, within the epicyclic approximation. Our model reproduces all the significant kinematic and structural signatures of this galaxy. We find that the primary bar is 7.9+/-0.6 kpc long and has a pattern speed of 36 +/- 2 km s^-1 kpc^-1. This places the corotation radius at 8.6 +/-0.5 kpc, the outer Lindblad resonance at 14.9+/-0.9 kpc and two inner Lindblad resonances at 60+/-5 pc and 2.9+/-0.1 kpc. These derivations lead to a ratio of the corotation radius over bar length of 1.0--1.2, which is in agreement with the predictions of simulations for fast galaxy bars. Our model presents evidence that the circumnuclear ring in this galaxy is not located near any of the resonance radii in this galaxy. The ring might have once formed at the outer inner Lindblad resonance radius, and it has been migrating inward, toward the centre of the galactic gravitational potential.
An important dynamic parameter of barred galaxies is the bar pattern speed. Among several methods that are used for the determination of the pattern speed the Tremaine-Weinberg method has the advantage of model independency and accuracy. In this work
Gas morphology and kinematics in the Milky Way contain key information for understanding the formation and evolution of our Galaxy. We present a high resolution hydrodynamical simulation based on a realistic barred Milky Way potential constrained by
We compare distance resolved, absolute proper motions in the Milky Way bar/bulge region to a grid of made-to-measure dynamical models with well defined pattern speeds. The data are obtained by combining the relative VVV Infrared Astrometric Catalog v
We present Fabry-Perot absorption-line spectroscopy of the SB0 galaxy NGC 7079. This is the first use of Fabry-Perot techniques to measure the two-dimensional stellar kinematics of an early-type disk galaxy. We scan the infrared CaII line using the R
We construct a large set of dynamical models of the galactic bulge, bar and inner disk using the Made-to-Measure method. Our models are constrained to match the red clump giant density from a combination of the VVV, UKIDSS and 2MASS infrared surveys