ﻻ يوجد ملخص باللغة العربية
We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave (CW) near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force, the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, expected from the evanescent plasmon field.
A setup is proposed to enhance tracking of very small particles, by using optical tweezers embedded within a Sagnac interferometer. The achievable signal-to-noise ratio is shown to be enhanced over that for a standard optical tweezers setup. The enha
Plasmonic optical tweezers are a ubiquitous tool for the precise manipulation of nanoparticles and biomolecules at low photon flux, while femtosecond-laser optical tweezers can probe the nonlinear optical properties of the trapped species with applic
It is very challenging to achieve near perfect absorption/emission that is both broadband and omnidirectional while utilizing a scalable fabrication process. Femtosecond laser surface processing is an emerging low-cost and large-scale manufacturing t
A coherent terahertz needle radiation emission mechanism is proposed. This mechanism can be realized in the experiments on femtosecond laser pulses interacting with surface of nanostructured ferromagnetic metal film. The proposed mechanism is based o
We report a stable double optical spring effect in an optical cavity pumped with a single optical field that arises as a result of birefringence. One end of the cavity is formed by a multilayer Al$_{0.92}$Ga$_{0.08}$As/GaAs stack supported by a micro