ترغب بنشر مسار تعليمي؟ اضغط هنا

A Stable Optical Trap from a Single Optical Field Utilizing Birefringence

168   0   0.0 ( 0 )
 نشر من قبل Robinjeet Singh
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report a stable double optical spring effect in an optical cavity pumped with a single optical field that arises as a result of birefringence. One end of the cavity is formed by a multilayer Al$_{0.92}$Ga$_{0.08}$As/GaAs stack supported by a microfabricated cantilever, with a natural mode frequency of $274$ Hz. The optical spring shifts the resonance to $21$ kHz, corresponding to a suppression of low frequency vibrations by a factor of more than $10^{4}$. The stable nature of the optical trap allows the cavity to be operated without any external feedback and with only a single optical field incident.



قيم البحث

اقرأ أيضاً

We present a novel method of machining optical fiber surfaces with a CO${}_2$ laser for use in Fiber-based Fabry-Perot Cavities (FFPCs). Previously FFPCs were prone to large birefringence and limited to relatively short cavity lengths ($le$ 200 $mu$m ). These characteristics hinder their use in some applications such as cavity quantum electrodynamics with trapped ions. We optimized the laser machining process to produce large, uniform surface structures. This enables the cavities to achieve high finesse even for long cavity lengths. By rotating the fibers around their axis during the laser machining process the asymmetry resulting from the lasers transverse mode profile is eliminated. Consequently we are able to fabricate fiber mirrors with a high degree of rotational symmetry, leading to remarkably low birefringence. Through measurements of the cavity finesse over a range of cavity lengths and the polarization dependence of the cavity linewidth, we confirmed the quality of the produced fiber mirrors for use in low-birefringence FFPCs.
We show that the optical force field in optical tweezers with elliptically polarized beams has the opposite handedness for a wide range of particle sizes and for the most common configurations. Our method is based on the direct observation of the par ticle equilibrium position under the effect of a transverse Stokes drag force, and its rotation around the optical axis by the mechanical effect of the optical torque. We find overall agreement with theory, with no fitting, provided that astigmatism, which is characterized separately, is included in the theoretical description. Our work opens the way for characterization of the trapping parameters, such as the microsphere complex refractive index and the astigmatism of the optical system, from measurements of the microsphere rotation angle.
We present experimental evidence of plasmonic-enhanced optical tweezers, of polystyrene beads in deionized water in the vicinity of metal-coated nanostructures. The optical tweezers operate with a continuous wave (CW) near-infrared laser. We employ a Cu/Au bilayer that significantly improves dissipation of heat generated by the trapping laser beam and avoid de-trapping from heat convection currents. We investigate the improvement of the optical trapping force, the effective trapping quality factor, and observe an exponential distance dependence of the trapping force from the nanostructures, expected from the evanescent plasmon field.
Highly efficient coupling of photons from nanoemitters into single-mode optical fibers is demonstrated using tapered fibers. 7.4 +/- 1.2 % of the total emitted photons from single CdSe/ZnS nanocrystals were coupled into a 300-nm-diameter tapered fibe r. The dependence of the coupling efficiency on the taper diameter was investigated and the coupling efficiency was found to increase exponentially with decreasing diameter. This method is very promising for nanoparticle sensing and single-photon sources.
132 - Zi-Lan Deng , Xiangping Li , 2017
We show that, a metasurface composed of subwavelength metallic slit array embedded in an asymmetric environment can exhibit either extraordinary optical transmission (EOT) or extraordinary optical diffraction (EOD). By employing an analytical model e xpansion method and the diffraction order chart in k-vector space, we found that the resonance decaying pathway of the local slit cavity mode can be tuned to either 0th or -1st diffraction order by changing the parallel wavevector, which gives rise to enhanced 0th transmission (EOT) of the structure for small incident angles, and enhanced -1st diffraction (EOD) for large incident angles. Based on this appealing feature, a multifunctional metasurface that can switch its functionality between transmission filter, mirror and off-axis lens is demonstrated. Our findings provide a convenient way to construct multifunctional integrated optical devices on a single planar device.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا