ترغب بنشر مسار تعليمي؟ اضغط هنا

A rapid algorithm to calculate joint probability matrices for joint entropies of arbitrary order

122   0   0.0 ( 0 )
 نشر من قبل Reginald Smith
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Reginald D. Smith




اسأل ChatGPT حول البحث

There is no closed form analytical equation or quick method to calculate probabilities based only on the entropy of a signal or process. Except in the cases where there are constraints on the state probabilities, one must typically derive the underlying probabilities through search algorithms. These become more computationally expensive as entropies of higher orders are investigated. In this paper, a method to calculate a joint probability matrix based on the entropy for any order is elaborated. With this method, only first order entropies need to be successfully calculated while the others are derived via multiplicative cascades.

قيم البحث

اقرأ أيضاً

98 - Igal Sason 2015
This paper starts by considering the minimization of the Renyi divergence subject to a constraint on the total variation distance. Based on the solution of this optimization problem, the exact locus of the points $bigl( D(Q|P_1), D(Q|P_2) bigr)$ is d etermined when $P_1, P_2, Q$ are arbitrary probability measures which are mutually absolutely continuous, and the total variation distance between $P_1$ and $P_2$ is not below a given value. It is further shown that all the points of this convex region are attained by probability measures which are defined on a binary alphabet. This characterization yields a geometric interpretation of the minimal Chernoff information subject to a constraint on the total variation distance. This paper also derives an exponential upper bound on the performance of binary linear block codes (or code ensembles) under maximum-likelihood decoding. Its derivation relies on the Gallager bounding technique, and it reproduces the Shulman-Feder bound as a special case. The bound is expressed in terms of the Renyi divergence from the normalized distance spectrum of the code (or the average distance spectrum of the ensemble) to the binomially distributed distance spectrum of the capacity-achieving ensemble of random block codes. This exponential bound provides a quantitative measure of the degradation in performance of binary linear block codes (or code ensembles) as a function of the deviation of their distance spectra from the binomial distribution. An efficient use of this bound is considered.
In this paper, we present a low-complexity joint detection-decoding algorithm for nonbinary LDPC codedmodulation systems. The algorithm combines hard-decision decoding using the message-passing strategy with the signal detector in an iterative manner . It requires low computational complexity, offers good system performance and has a fast rate of decoding convergence. Compared to the q-ary sum-product algorithm (QSPA), it provides an attractive candidate for practical applications of q-ary LDPC codes.
In this paper, we introduce properly-invariant diagonality measures of Hermitian positive-definite matrices. These diagonality measures are defined as distances or divergences between a given positive-definite matrix and its diagonal part. We then gi ve closed-form expressions of these diagonality measures and discuss their invariance properties. The diagonality measure based on the log-determinant $alpha$-divergence is general enough as it includes a diagonality criterion used by the signal processing community as a special case. These diagonality measures are then used to formulate minimization problems for finding the approximate joint diagonalizer of a given set of Hermitian positive-definite matrices. Numerical computations based on a modified Newton method are presented and commented.
Joint radar and communication (JRC) technology has become important for civil and military applications for decades. This paper introduces the concepts, characteristics and advantages of JRC technology, presenting the typical applications that have b enefited from JRC technology currently and in the future. This paper explores the state-of-the-art of JRC in the levels of coexistence, cooperation, co-design and collaboration. Compared to previous surveys, this paper reviews the entire trends that drive the development of radar sensing and wireless communication using JRC. Specifically, we explore an open research issue on radar and communication operating with mutual benefits based on collaboration, which represents the fourth stage of JRC evolution. This paper provides useful perspectives for future researches of JRC technology.
274 - Jiahui Li , Yin Sun , Limin Xiao 2018
Maintaining reliable millimeter wave (mmWave) connections to many fast-moving mobiles is a key challenge in the theory and practice of 5G systems. In this paper, we develop a new algorithm that can jointly track the beam direction and channel coeffic ient of mmWave propagation paths using phased antenna arrays. Despite the significant difficulty in this problem, our algorithm can simultaneously achieve fast tracking speed, high tracking accuracy, and low pilot overhead. In static scenarios, this algorithm can converge to the minimum Cramer-Rao lower bound of beam direction with high probability. Simulations reveal that this algorithm greatly outperforms several existing algorithms. Even at SNRs as low as 5dB, our algorithm is capable of tracking a mobile moving at an angular velocity of 5.45 degrees per second and achieving over 95% of channel capacity with a 32-antenna phased array, by inserting only 10 pilots per second.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا