ترغب بنشر مسار تعليمي؟ اضغط هنا

Filter Design and Performance Evaluation for Fingerprint Image Segmentation

71   0   0.0 ( 0 )
 نشر من قبل Carsten Gottschlich
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint algorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: true foreground can be labeled as background and features like minutiae can be lost, or conversely true background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available.

قيم البحث

اقرأ أيضاً

57 - Arnaud Martin 2008
Each year, numerous segmentation and classification algorithms are invented or reused to solve problems where machine vision is needed. Generally, the efficiency of these algorithms is compared against the results given by one or many human experts. However, in many situations, the location of the real boundaries of the objects as well as their classes are not known with certainty by the human experts. Furthermore, only one aspect of the segmentation and classification problem is generally evaluated. In this paper we present a new evaluation method for classification and segmentation of image, where we take into account both the classification and segmentation results as well as the level of certainty given by the experts. As a concrete example of our method, we evaluate an automatic seabed characterization algorithm based on sonar images.
267 - Haidong Zhu , Jialin Shi , Ji Wu 2019
Deep learning methods have achieved promising performance in many areas, but they are still struggling with noisy-labeled images during the training process. Considering that the annotation quality indispensably relies on great expertise, the problem is even more crucial in the medical image domain. How to eliminate the disturbance from noisy labels for segmentation tasks without further annotations is still a significant challenge. In this paper, we introduce our label quality evaluation strategy for deep neural networks automatically assessing the quality of each label, which is not explicitly provided, and training on clean-annotated ones. We propose a solution for network automatically evaluating the relative quality of the labels in the training set and using good ones to tune the network parameters. We also design an overfitting control module to let the network maximally learn from the precise annotations during the training process. Experiments on the public biomedical image segmentation dataset have proved the method outperforms baseline methods and retains both high accuracy and good generalization at different noise levels.
Unsupervised evaluation of segmentation quality is a crucial step in image segmentation applications. Previous unsupervised evaluation methods usually lacked the adaptability to multi-scale segmentation. A scale-constrained evaluation method that eva luates segmentation quality according to the specified target scale is proposed in this paper. First, regional saliency and merging cost are employed to describe intra-region homogeneity and inter-region heterogeneity, respectively. Subsequently, both of them are standardized into equivalent spectral distances of a predefined region. Finally, by analyzing the relationship between image characteristics and segmentation quality, we establish the evaluation model. Experimental results show that the proposed method outperforms four commonly used unsupervised methods in multi-scale evaluation tasks.
We present Boundary IoU (Intersection-over-Union), a new segmentation evaluation measure focused on boundary quality. We perform an extensive analysis across different error types and object sizes and show that Boundary IoU is significantly more sens itive than the standard Mask IoU measure to boundary errors for large objects and does not over-penalize errors on smaller objects. The new quality measure displays several desirable characteristics like symmetry w.r.t. prediction/ground truth pairs and balanced responsiveness across scales, which makes it more suitable for segmentation evaluation than other boundary-focused measures like Trimap IoU and F-measure. Based on Boundary IoU, we update the standard evaluation protocols for instance and panoptic segmentation tasks by proposing the Boundary AP (Average Precision) and Boundary PQ (Panoptic Quality) metrics, respectively. Our experiments show that the new evaluation metrics track boundary quality improvements that are generally overlooked by current Mask IoU-based evaluation metrics. We hope that the adoption of the new boundary-sensitive evaluation metrics will lead to rapid progress in segmentation methods that improve boundary quality.
Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human initialization. The success of semantic segmentation algorithms is contingent on the availability of high-quality imaging data with corres ponding labels provided by experts. We sought to create a large collection of annotated medical image datasets of various clinically relevant anatomies available under open source license to facilitate the development of semantic segmentation algorithms. Such a resource would allow: 1) objective assessment of general-purpose segmentation methods through comprehensive benchmarking and 2) open and free access to medical image data for any researcher interested in the problem domain. Through a multi-institutional effort, we generated a large, curated dataset representative of several highly variable segmentation tasks that was used in a crowd-sourced challenge - the Medical Segmentation Decathlon held during the 2018 Medical Image Computing and Computer Aided Interventions Conference in Granada, Spain. Here, we describe these ten labeled image datasets so that these data may be effectively reused by the research community.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا