ترغب بنشر مسار تعليمي؟ اضغط هنا

Evaluation for Uncertain Image Classification and Segmentation

83   0   0.0 ( 0 )
 نشر من قبل Arnaud Martin
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Arnaud Martin




اسأل ChatGPT حول البحث

Each year, numerous segmentation and classification algorithms are invented or reused to solve problems where machine vision is needed. Generally, the efficiency of these algorithms is compared against the results given by one or many human experts. However, in many situations, the location of the real boundaries of the objects as well as their classes are not known with certainty by the human experts. Furthermore, only one aspect of the segmentation and classification problem is generally evaluated. In this paper we present a new evaluation method for classification and segmentation of image, where we take into account both the classification and segmentation results as well as the level of certainty given by the experts. As a concrete example of our method, we evaluate an automatic seabed characterization algorithm based on sonar images.



قيم البحث

اقرأ أيضاً

Fingerprint recognition plays an important role in many commercial applications and is used by millions of people every day, e.g. for unlocking mobile phones. Fingerprint image segmentation is typically the first processing step of most fingerprint a lgorithms and it divides an image into foreground, the region of interest, and background. Two types of error can occur during this step which both have a negative impact on the recognition performance: true foreground can be labeled as background and features like minutiae can be lost, or conversely true background can be misclassified as foreground and spurious features can be introduced. The contribution of this paper is threefold: firstly, we propose a novel factorized directional bandpass (FDB) segmentation method for texture extraction based on the directional Hilbert transform of a Butterworth bandpass (DHBB) filter interwoven with soft-thresholding. Secondly, we provide a manually marked ground truth segmentation for 10560 images as an evaluation benchmark. Thirdly, we conduct a systematic performance comparison between the FDB method and four of the most often cited fingerprint segmentation algorithms showing that the FDB segmentation method clearly outperforms these four widely used methods. The benchmark and the implementation of the FDB method are made publicly available.
We present a novel clustering objective that learns a neural network classifier from scratch, given only unlabelled data samples. The model discovers clusters that accurately match semantic classes, achieving state-of-the-art results in eight unsuper vised clustering benchmarks spanning image classification and segmentation. These include STL10, an unsupervised variant of ImageNet, and CIFAR10, where we significantly beat the accuracy of our closest competitors by 6.6 and 9.5 absolute percentage points respectively. The method is not specialised to computer vision and operates on any paired dataset samples; in our experiments we use random transforms to obtain a pair from each image. The trained network directly outputs semantic labels, rather than high dimensional representations that need external processing to be usable for semantic clustering. The objective is simply to maximise mutual information between the class assignments of each pair. It is easy to implement and rigorously grounded in information theory, meaning we effortlessly avoid degenerate solutions that other clustering methods are susceptible to. In addition to the fully unsupervised mode, we also test two semi-supervised settings. The first achieves 88.8% accuracy on STL10 classification, setting a new global state-of-the-art over all existing methods (whether supervised, semi-supervised or unsupervised). The second shows robustness to 90% reductions in label coverage, of relevance to applications that wish to make use of small amounts of labels. github.com/xu-ji/IIC
267 - Haidong Zhu , Jialin Shi , Ji Wu 2019
Deep learning methods have achieved promising performance in many areas, but they are still struggling with noisy-labeled images during the training process. Considering that the annotation quality indispensably relies on great expertise, the problem is even more crucial in the medical image domain. How to eliminate the disturbance from noisy labels for segmentation tasks without further annotations is still a significant challenge. In this paper, we introduce our label quality evaluation strategy for deep neural networks automatically assessing the quality of each label, which is not explicitly provided, and training on clean-annotated ones. We propose a solution for network automatically evaluating the relative quality of the labels in the training set and using good ones to tune the network parameters. We also design an overfitting control module to let the network maximally learn from the precise annotations during the training process. Experiments on the public biomedical image segmentation dataset have proved the method outperforms baseline methods and retains both high accuracy and good generalization at different noise levels.
Unsupervised evaluation of segmentation quality is a crucial step in image segmentation applications. Previous unsupervised evaluation methods usually lacked the adaptability to multi-scale segmentation. A scale-constrained evaluation method that eva luates segmentation quality according to the specified target scale is proposed in this paper. First, regional saliency and merging cost are employed to describe intra-region homogeneity and inter-region heterogeneity, respectively. Subsequently, both of them are standardized into equivalent spectral distances of a predefined region. Finally, by analyzing the relationship between image characteristics and segmentation quality, we establish the evaluation model. Experimental results show that the proposed method outperforms four commonly used unsupervised methods in multi-scale evaluation tasks.
We propose to apply a 2D CNN architecture to 3D MRI image Alzheimers disease classification. Training a 3D convolutional neural network (CNN) is time-consuming and computationally expensive. We make use of approximate rank pooling to transform the 3D MRI image volume into a 2D image to use as input to a 2D CNN. We show our proposed CNN model achieves $9.5%$ better Alzheimers disease classification accuracy than the baseline 3D models. We also show that our method allows for efficient training, requiring only 20% of the training time compared to 3D CNN models. The code is available online: https://github.com/UkyVision/alzheimer-project.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا