ترغب بنشر مسار تعليمي؟ اضغط هنا

A large annotated medical image dataset for the development and evaluation of segmentation algorithms

192   0   0.0 ( 0 )
 نشر من قبل Amber Simpson
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Semantic segmentation of medical images aims to associate a pixel with a label in a medical image without human initialization. The success of semantic segmentation algorithms is contingent on the availability of high-quality imaging data with corresponding labels provided by experts. We sought to create a large collection of annotated medical image datasets of various clinically relevant anatomies available under open source license to facilitate the development of semantic segmentation algorithms. Such a resource would allow: 1) objective assessment of general-purpose segmentation methods through comprehensive benchmarking and 2) open and free access to medical image data for any researcher interested in the problem domain. Through a multi-institutional effort, we generated a large, curated dataset representative of several highly variable segmentation tasks that was used in a crowd-sourced challenge - the Medical Segmentation Decathlon held during the 2018 Medical Image Computing and Computer Aided Interventions Conference in Granada, Spain. Here, we describe these ten labeled image datasets so that these data may be effectively reused by the research community.



قيم البحث

اقرأ أيضاً

Human activities are hugely restricted by COVID-19, recently. Robots that can conduct inter-floor navigation attract much public attention, since they can substitute human workers to conduct the service work. However, current robots either depend on human assistance or elevator retrofitting, and fully autonomous inter-floor navigation is still not available. As the very first step of inter-floor navigation, elevator button segmentation and recognition hold an important position. Therefore, we release the first large-scale publicly available elevator panel dataset in this work, containing 3,718 panel images with 35,100 button labels, to facilitate more powerful algorithms on autonomous elevator operation. Together with the dataset, a number of deep learning based implementations for button segmentation and recognition are also released to benchmark future methods in the community. The dataset will be available at url{https://github.com/zhudelong/elevator_button_recognition
Deep neural networks have been a prevailing technique in the field of medical image processing. However, the most popular convolutional neural networks (CNNs) based methods for medical image segmentation are imperfect because they model long-range de pendencies by stacking layers or enlarging filters. Transformers and the self-attention mechanism are recently proposed to effectively learn long-range dependencies by modeling all pairs of word-to-word attention regardless of their positions. The idea has also been extended to the computer vision field by creating and treating image patches as embeddings. Considering the computation complexity for whole image self-attention, current transformer-based models settle for a rigid partitioning scheme that potentially loses informative relations. Besides, current medical transformers model global context on full resolution images, leading to unnecessary computation costs. To address these issues, we developed a novel method to integrate multi-scale attention and CNN feature extraction using a pyramidal network architecture, namely Pyramid Medical Transformer (PMTrans). The PMTrans captured multi-range relations by working on multi-resolution images. An adaptive partitioning scheme was implemented to retain informative relations and to access different receptive fields efficiently. Experimental results on three medical image datasets (gland segmentation, MoNuSeg, and HECKTOR datasets) showed that PMTrans outperformed the latest CNN-based and transformer-based models for medical image segmentation.
We introduce RaidaR, a rich annotated image dataset of rainy street scenes, to support autonomous driving research. The new dataset contains the largest number of rainy images (58,542) to date, 5,000 of which provide semantic segmentations and 3,658 provide object instance segmentations. The RaidaR images cover a wide range of realistic rain-induced artifacts, including fog, droplets, and road reflections, which can effectively augment existing street scene datasets to improve data-driven machine perception during rainy weather. To facilitate efficient annotation of a large volume of images, we develop a semi-automatic scheme combining manual segmentation and an automated processing akin to cross validation, resulting in 10-20 fold reduction on annotation time. We demonstrate the utility of our new dataset by showing how data augmentation with RaidaR can elevate the accuracy of existing segmentation algorithms. We also present a novel unpaired image-to-image translation algorithm for adding/removing rain artifacts, which directly benefits from RaidaR.
Object grasping is critical for many applications, which is also a challenging computer vision problem. However, for the clustered scene, current researches suffer from the problems of insufficient training data and the lacking of evaluation benchmar ks. In this work, we contribute a large-scale grasp pose detection dataset with a unified evaluation system. Our dataset contains 87,040 RGBD images with over 370 million grasp poses. Meanwhile, our evaluation system directly reports whether a grasping is successful or not by analytic computation, which is able to evaluate any kind of grasp poses without exhausted labeling pose ground-truth. We conduct extensive experiments to show that our dataset and evaluation system can align well with real-world experiments. Our dataset, source code and models will be made publicly available.
Being heavily reliant on animals, it is our ethical obligation to improve their well-being by understanding their needs. Several studies show that animal needs are often expressed through their faces. Though remarkable progress has been made towards the automatic understanding of human faces, this has regrettably not been the case with animal faces. There exists significant room and appropriate need to develop automatic systems capable of interpreting animal faces. Among many transformative impacts, such a technology will foster better and cheaper animal healthcare, and further advance animal psychology understanding. We believe the underlying research progress is mainly obstructed by the lack of an adequately annotated dataset of animal faces, covering a wide spectrum of animal species. To this end, we introduce a large-scale, hierarchical annotated dataset of animal faces, featuring 21.9K faces from 334 diverse species and 21 animal orders across biological taxonomy. These faces are captured `in-the-wild conditions and are consistently annotated with 9 landmarks on key facial features. The proposed dataset is structured and scalable by design; its development underwent four systematic stages involving rigorous, manual annotation effort of over 6K man-hours. We benchmark it for face alignment using the existing art under novel problem settings. Results showcase its challenging nature, unique attributes and present definite prospects for novel, adaptive, and generalized face-oriented CV algorithms. We further benchmark the dataset for face detection and fine-grained recognition tasks, to demonstrate multi-task applications and room for improvement. Experiments indicate that this dataset will push the algorithmic advancements across many related CV tasks and encourage the development of novel systems for animal facial behaviour monitoring. We will make the dataset publicly available.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا