ترغب بنشر مسار تعليمي؟ اضغط هنا

Identification of weakly coupled multiphysics problems. Application to the inverse problem of electrocardiography

75   0   0.0 ( 0 )
 نشر من قبل Jean-Frederic Gerbeau
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English
 تأليف Cesare Corrado




اسأل ChatGPT حول البحث

This work addresses the inverse problem of electrocardiography from a new perspective, by combining electrical and mechanical measurements. Our strategy relies on the defini-tion of a model of the electromechanical contraction which is registered on ECG data but also on measured mechanical displacements of the heart tissue typically extracted from medical images. In this respect, we establish in this work the convergence of a sequential estimator which combines for such coupled problems various state of the art sequential data assimilation methods in a unified consistent and efficient framework. Indeed we ag-gregate a Luenberger observer for the mechanical state and a Reduced Order Unscented Kalman Filter applied on the parameters to be identified and a POD projection of the electrical state. Then using synthetic data we show the benefits of our approach for the estimation of the electrical state of the ventricles along the heart beat compared with more classical strategies which only consider an electrophysiological model with ECG measurements. Our numerical results actually show that the mechanical measurements improve the identifiability of the electrical problem allowing to reconstruct the electrical state of the coupled system more precisely. Therefore, this work is intended to be a first proof of concept, with theoretical justifications and numerical investigations, of the ad-vantage of using available multi-modal observations for the estimation and identification of an electromechanical model of the heart.



قيم البحث

اقرأ أيضاً

We present an arbitrarily high-order, conditionally stable, partitioned spectral deferred correction (SDC) method for solving multiphysics problems using a sequence of pre-existing single-physics solvers. This method extends the work in [1, 2], which used implicit-explicit Runge-Kutta methods (IMEX) to build high-order, partitioned multiphysics solvers. We consider a generic multiphysics problem modeled as a system of coupled ordinary differential equations (ODEs), coupled through coupling terms that can depend on the state of each subsystem; therefore the method applies to both a semi-discretized system of partial differential equations (PDEs) or problems naturally modeled as coupled systems of ODEs. The sufficient conditions to build arbitrarily high-order partitioned SDC schemes are derived. Based on these conditions, various of partitioned SDC schemes are designed. The stability of the first-order partitioned SDC scheme is analyzed in detail on a coupled, linear model problem. We show that the scheme is conditionally stable, and under conditions on the coupling strength, the scheme can be unconditionally stable. We demonstrate the performance of the proposed partitioned solvers on several classes of multiphysics problems including a simple linear system of ODEs, advection-diffusion-reaction systems, and fluid-structure interaction problems with both incompressible and compressible flows, where we verify the design order of the SDC schemes and study various stability properties. We also directly compare the accuracy, stability, and cost of the proposed partitioned SDC solver with the partitioned IMEX method in [1, 2] on this suite of test problems. The results suggest that the high-order partitioned SDC solvers are more robust than the partitioned IMEX solvers for the numerical examples considered in this work, while the IMEX methods require fewer implicit solves.
Predictive high-fidelity finite element simulations of human cardiac mechanics co-mmon-ly require a large number of structural degrees of freedom. Additionally, these models are often coupled with lumped-parameter models of hemodynamics. High computa tional demands, however, slow down model calibration and therefore limit the use of cardiac simulations in clinical practice. As cardiac models rely on several patient-specific parameters, just one solution corresponding to one specific parameter set does not at all meet clinical demands. Moreover, while solving the nonlinear problem, 90% of the computation time is spent solving linear systems of equations. We propose a novel approach to reduce only the structural dimension of the monolithically coupled structure-windkessel system by projection onto a lower-dimensional subspace. We obtain a good approximation of the displacement field as well as of key scalar cardiac outputs even with very few reduced degrees of freedom while achieving considerable speedups. For subspace generation, we use proper orthogonal decomposition of displacement snapshots. To incorporate changes in the parameter set into our reduced order model, we provide a comparison of subspace interpolation methods. We further show how projection-based model order reduction can be easily integrated into a gradient-based optimization and demonstrate its performance in a real-world multivariate inverse analysis scenario. Using the presented projection-based model order reduction approach can significantly speed up model personalization and could be used for many-query tasks in a clinical setting.
In this paper we present a hybrid approach to numerically solve two-dimensional electromagnetic inverse scattering problems, whereby the unknown scatterer is hosted by a possibly inhomogeneous background. The approach is `hybrid in that it merges a q ualitative and a quantitative method to optimize the way of exploiting the a priori information on the background within the inversion procedure, thus improving the quality of the reconstruction and reducing the data amount necessary for a satisfactory result. In the qualitative step, this a priori knowledge is utilized to implement the linear sampling method in its near-field formulation for an inhomogeneous background, in order to identify the region where the scatterer is located. On the other hand, the same a priori information is also encoded in the quantitative step by extending and applying the contrast source inversion method to what we call the `inhomogeneous Lippmann-Schwinger equation: the latter is a generalization of the classical Lippmann-Schwinger equation to the case of an inhomogeneous background, and in our paper is deduced from the differential formulation of the direct scattering problem to provide the reconstruction algorithm with an appropriate theoretical basis. Then, the point values of the refractive index are computed only in the region identified by the linear sampling method at the previous step. The effectiveness of this hybrid approach is supported by numerical simulations presented at the end of the paper.
In many cases, groundwater flow in an unconfined aquifer can be simplified to a one-dimensional Sturm-Liouville model of the form: begin{equation*} x(t)+lambda x(t)=h(t)+varepsilon f(x(t)),hspace{.1in}tin(0,pi) end{equation*} subject to non-local bou ndary conditions begin{equation*} x(0)=h_1+varepsiloneta_1(x)text{ and } x(pi)=h_2+varepsiloneta_2(x). end{equation*} In this paper, we study the existence of solutions to the above Sturm-Liouville problem under the assumption that $varepsilon$ is a small parameter. Our method will be analytical, utilizing the implicit function theorem and its generalizations.
We consider the problem of computing approximate solution of Poisson equation in the low-parametric tensor formats. We propose a new algorithm to compute the solution based on the cross approximation algorithm in the frequency space, and it has bette r complexity with respect to ranks in comparison with standard algorithms, which are based on the exponential sums approximation. To illustrate the effectiveness of our solver, we incorporate into a Uzawa solver for the Stokes problem on semi-staggered grid as a subsolver. The resulting solver outperforms the standard method for $n geq 256$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا