ترغب بنشر مسار تعليمي؟ اضغط هنا

All about baryons: revisiting SIDM predictions at small halo masses

33   0   0.0 ( 0 )
 نشر من قبل Fabio Governato
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Bastidas Fry




اسأل ChatGPT حول البحث

We use cosmological hydrodynamic simulations to consistently compare the assembly of dwarf galaxies in both $Lambda$ dominated, Cold (CDM) and Self--Interacting (SIDM) dark matter models. The SIDM model adopts a constant cross section of 2 $cm^{2}/g$, a relatively large value to maximize its effects. These are the first SIDM simulations that are combined with a description of stellar feedback that naturally drives potential fluctuations able to create dark matter cores. Remarkably, SIDM fails to significantly lower the central dark matter density at halo peak velocities V$_{max}$ $<$ 30 Km/s. This is due to the fact that the central regions of very low--mass field halos have relatively low central velocity dispersion and densities, leading to time scales for SIDM collisions greater than a Hubble time. CDM halos with V$_{max}$ $<$ 30 km/s have inefficient star formation, and hence weak supernova feedback. At a fixed 2 cm2/g SIDM cross section, the DM content of very low mass CDM and SIDM halos differs by no more than a factor of two within 100-200pc. At larger halo masses ($sim$ 10$^{10}$ solar masses), the introduction of baryonic processes creates field dwarf galaxies with dark matter cores and central DM$+$baryon distributions that are effectively indistinguishable between CDM and SIDM. Both models are in broad agreement with observed Local Group field galaxies across the range of masses explored. To significantly differentiate SIDM from CDM at the scale of faint dwarf galaxies, a velocity dependent cross section that rapidly increases to values larger than 2 $cm^{2}/g$ for halos with V$_{max}$ < 25-30 Km/s needs to be introduced.

قيم البحث

اقرأ أيضاً

433 - Romeel Dave 2009
We present predictions for galactic halo baryon fractions from cosmological hydrodynamic simulations with a well-constrained model for galactic outflows. Without outflows, halos contain roughly the cosmic fraction of baryons, slightly lowered at high masses owing to pressure support from hot gas. The star formation efficiency is large and increases monotonically to low masses, in disagreement with data. With outflows, the baryon fraction is increasingly suppressed in halos to lower masses. A Milky Way-sized halo at z=0 has about 60% of the cosmic fraction of baryons, so missing halo baryons have largely been evacuated, rather than existing in some hidden form. Large halos (>10^13 Mo) contain 85% of their cosmic share of baryons, which explains the mild missing baryon problem seen in clusters. By comparing results at z=3 and z=0, we show that most of the baryon removal occurs at early epochs in larger halos, while smaller halos lose baryons more recently. Star formation efficiency is maximized in halos of ~10^13 Mo, dropping significantly to lower masses, which helps reconcile the sub-L* slope of the observed stellar and halo mass functions. These trends are predominantly driven by differential wind recycling, namely, that wind material takes longer to return to low-mass galaxies than high-mass galaxies. The hot gas content of halos is mostly unaffected by outflows, showing that outflows tend to blow holes and escape rather than deposit their energy into halo gas.
194 - Mark Vogelsberger 2014
We present the first cosmological simulations of dwarf galaxies, which include dark matter self-interactions and baryons. We study two dwarf galaxies within cold dark matter, and four different elastic self-interacting scenarios with constant and vel ocity-dependent cross sections, motivated by a new force in the hidden dark matter sector. Our highest resolution simulation has a baryonic mass resolution of $1.8times 10^2,{rm M}_odot$ and a gravitational softening length of $34,{rm pc}$ at $z=0$. In this first study we focus on the regime of mostly isolated dwarf galaxies with halo masses $sim10^{10},{rm M}_odot$ where dark matter dynamically dominates even at sub-kpc scales. We find that while the global properties of galaxies of this scale are minimally affected by allowed self-interactions, their internal structures change significantly if the cross section is large enough within the inner sub-kpc region. In these dark-matter-dominated systems, self-scattering ties the shape of the stellar distribution to that of the dark matter distribution. In particular, we find that the stellar core radius is closely related to the dark matter core radius generated by self-interactions. Dark matter collisions lead to dwarf galaxies with larger stellar cores and smaller stellar central densities compared to the cold dark matter case. The central metallicity within $1,{rm kpc}$ is also larger by up to $sim 15%$ in the former case. We conclude that the mass distribution, and characteristics of the central stars in dwarf galaxies can potentially be used to probe the self-interacting nature of dark matter.
We present BAHAMAS-SIDM, the first large-volume, (400/h Mpc)^3, cosmological simulations including both self-interacting dark matter (SIDM) and baryonic physics. These simulations are important for two primary reasons: 1) they include the effects of baryons on the dark matter distribution 2) the baryon particles can be used to make mock observables that can be compared directly with observations. As is well known, SIDM haloes are systematically less dense in their centres, and rounder, than CDM haloes. Here we find that that these changes are not reflected in the distribution of gas or stars within galaxy clusters, or in their X-ray luminosities. However, gravitational lensing observables can discriminate between DM models, and we present a menu of tests that future surveys could use to measure the SIDM interaction strength. We ray-trace our simulated galaxy clusters to produce strong lensing maps. Including baryons boosts the lensing strength of clusters that produce no critical curves in SIDM-only simulations. Comparing the Einstein radii of our simulated clusters with those observed in the CLASH survey, we find that at velocities around 1000 km/s an SIDM cross-section of sigma/m > 1 cm^2/g is likely incompatible with observed cluster lensing.
We present the cross-correlation function of MgII absorbers with respect to a volume-limited sample of luminous red galaxies (LRGs) at z=0.45-0.60 using the largest MgII absorber sample and a new LRG sample from SDSS DR7. We present the clustering si gnal of absorbers on projected scales r_p = 0.3-35 Mpc/h in four Wr(2796) bins spanning Wr(2796)=0.4-5.6A. We found that on average MgII absorbers reside in halos < log M_h > approx 12.1, similar to the halo mass of an L_* galaxy. We report that the weakest absorbers in our sample with W_r(2796)=0.4-1.1A reside in relatively massive halos with < log M_h > approx 12.5^{+0.6}_{-1.3}, while stronger absorbers reside in halos of similar or lower masses < log M_h > approx 11.6^{+0.9}. We compared our bias data points, b, and the frequency distribution function of absorbers, f_{W_r}, with a simple model incorporating an isothermal density profile to mimic the distribution of absorbing gas in halos. We also compared the bias data points with Tinker & Chen (2008) who developed halo occupation distribution models of MgII absorbers that are constrained by b and f_{W_r}. The simple isothermal model can be ruled at a approx 2.8sigma level mostly because of its inability to reproduce f_{W_r}. However, b values are consistent with both models, including TC08. In addition, we show that the mean b of absorbers does not decrease beyond W_r(2796) approx 1.6A. The flat or potential upturn of b for Wr(2796) gtrsim 1.6A absorbers suggests the presence of additional cool gas in massive halos.
We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $M_mathrm{halo} approx 10^{10},$M$_odot$ at $z=0$, across a range of dark matter models. For the first time, we compare how both self-i nteracting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r$_{1/2}<500$ pc) have lower $sigma_star/V_mathrm{max}$ ratios, reinforcing the idea that smaller dwarfs may reside in halos that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in $Lambda$CDM. The V$_{1/2}-$r$_{1/2}$ relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Spatially-resolved rotation curves in the central regions ($<400$ pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r$_{1/2}$ values can only originate from dark matter self-interactions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا