ترغب بنشر مسار تعليمي؟ اضغط هنا

Dwarf Galaxies in CDM, WDM, and SIDM: Disentangling Baryons and Dark Matter Physics

124   0   0.0 ( 0 )
 نشر من قبل Michael Boylan-Kolchin
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a suite of FIRE-2 cosmological zoom-in simulations of isolated field dwarf galaxies, all with masses of $M_mathrm{halo} approx 10^{10},$M$_odot$ at $z=0$, across a range of dark matter models. For the first time, we compare how both self-interacting dark matter (SIDM) and/or warm dark matter (WDM) models affect the assembly histories as well as the central density structure in fully hydrodynamical simulations of dwarfs. Dwarfs with smaller stellar half-mass radii (r$_{1/2}<500$ pc) have lower $sigma_star/V_mathrm{max}$ ratios, reinforcing the idea that smaller dwarfs may reside in halos that are more massive than is naively expected. The majority of dwarfs simulated with self-interactions actually experience contraction of their inner density profiles with the addition of baryons relative to the cores produced in dark-matter-only runs, though the simulated dwarfs are always less centrally dense than in $Lambda$CDM. The V$_{1/2}-$r$_{1/2}$ relation across all simulations is generally consistent with observations of Local Field dwarfs, though compact objects such as Tucana provide a unique challenge. Spatially-resolved rotation curves in the central regions ($<400$ pc) of small dwarfs could provide a way to distinguish between CDM, WDM, and SIDM, however: at the masses probed in this simulation suite, cored density profiles in dwarfs with small r$_{1/2}$ values can only originate from dark matter self-interactions.

قيم البحث

اقرأ أيضاً

193 - Mark Vogelsberger 2014
We present the first cosmological simulations of dwarf galaxies, which include dark matter self-interactions and baryons. We study two dwarf galaxies within cold dark matter, and four different elastic self-interacting scenarios with constant and vel ocity-dependent cross sections, motivated by a new force in the hidden dark matter sector. Our highest resolution simulation has a baryonic mass resolution of $1.8times 10^2,{rm M}_odot$ and a gravitational softening length of $34,{rm pc}$ at $z=0$. In this first study we focus on the regime of mostly isolated dwarf galaxies with halo masses $sim10^{10},{rm M}_odot$ where dark matter dynamically dominates even at sub-kpc scales. We find that while the global properties of galaxies of this scale are minimally affected by allowed self-interactions, their internal structures change significantly if the cross section is large enough within the inner sub-kpc region. In these dark-matter-dominated systems, self-scattering ties the shape of the stellar distribution to that of the dark matter distribution. In particular, we find that the stellar core radius is closely related to the dark matter core radius generated by self-interactions. Dark matter collisions lead to dwarf galaxies with larger stellar cores and smaller stellar central densities compared to the cold dark matter case. The central metallicity within $1,{rm kpc}$ is also larger by up to $sim 15%$ in the former case. We conclude that the mass distribution, and characteristics of the central stars in dwarf galaxies can potentially be used to probe the self-interacting nature of dark matter.
We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in {Lambda}CDM haloes that collect into galaxies. This galaxy formation efficiency correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of observed dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or their dark matter content is much lower than expected from {Lambda}CDM haloes. This missing dark matter is reminiscent of the inner mass deficit of galaxies with slowly-rising rotation curves, but cannot be explained away by star formation-induced cores in the dark mass profile, since the anomalous deficit applies to regions larger than the luminous galaxies themselves. We argue that explaining the structure of these galaxies would require either substantial modification of the standard Lambda cold dark matter paradigm or else significant revision to the uncertainties in their inferred mass profiles, which should be much larger than reported. Systematic errors in inclination may provide a simple resolution to what would otherwise be a rather intractable problem for the current paradigm.
We apply two new state-of-the-art methods that model the distribution of observed tracers in projected phase space to lift the mass / velocity anisotropy (VA) degeneracy and deduce constraints on the mass profiles of galaxies, as well as their VA. We first show how a distribution function based method applied to the satellite kinematics of otherwise isolated SDSS galaxies shows convincing observational evidence of age matching: red galaxies have more concentrated dark matter (DM) halos than blue galaxies of the same stellar or halo mass. Then, applying the MAMPOSSt technique to M87 (traced by its red and blue globular clusters) we find that very cuspy DM is favored, unless we release priors on DM concentration or stellar mass (leading to unconstrained slope). For the Fornax dwarf spheroidal (traced by its metal-rich and metal-poor stars), the inner DM slope is unconstrained, with weak evidence for a core if the stellar mass is fixed. This highlights how priors are crucial for DM modeling. Finally, we find that blue GCs around M87 and metal-rich stars in Fornax have tangential outer VA.
We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments (FIRE-2) galaxy formation physics, but allo w the dark matter to have dissipative self-interactions analogous to Standard Model forces, parameterized by the self-interaction cross-section per unit mass, $(sigma/m)$, and the dimensionless degree of dissipation, $0<f_{rm diss}<1$. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $M_{rm halo} simeq 10^{10-11} {rm M}_{odot}$. Central density profiles of simulated dwarfs become cuspy when $(sigma/m)_{rm eff} gtrsim 0.1,{rm cm^{2},g^{-1}}$ (and $f_{rm diss}=0.5$ as fiducial). The power-law slopes asymptote to $alpha approx -1.5$ in low-mass dwarfs independent of cross-section, which arises from a dark matter cooling flow. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $(sigma/m)_{rm eff} ll 0.1,{rm cm^{2},g^{-1}}$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $(sigma/m) gtrsim 10,{rm cm^{2},g^{-1}}$ develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin dark disks often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ.
We present BAHAMAS-SIDM, the first large-volume, (400/h Mpc)^3, cosmological simulations including both self-interacting dark matter (SIDM) and baryonic physics. These simulations are important for two primary reasons: 1) they include the effects of baryons on the dark matter distribution 2) the baryon particles can be used to make mock observables that can be compared directly with observations. As is well known, SIDM haloes are systematically less dense in their centres, and rounder, than CDM haloes. Here we find that that these changes are not reflected in the distribution of gas or stars within galaxy clusters, or in their X-ray luminosities. However, gravitational lensing observables can discriminate between DM models, and we present a menu of tests that future surveys could use to measure the SIDM interaction strength. We ray-trace our simulated galaxy clusters to produce strong lensing maps. Including baryons boosts the lensing strength of clusters that produce no critical curves in SIDM-only simulations. Comparing the Einstein radii of our simulated clusters with those observed in the CLASH survey, we find that at velocities around 1000 km/s an SIDM cross-section of sigma/m > 1 cm^2/g is likely incompatible with observed cluster lensing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا