ترغب بنشر مسار تعليمي؟ اضغط هنا

Halo Masses of MgII absorbers at zsim 0.5 from SDSS DR7

126   0   0.0 ( 0 )
 نشر من قبل Jean-Rene Gauthier
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the cross-correlation function of MgII absorbers with respect to a volume-limited sample of luminous red galaxies (LRGs) at z=0.45-0.60 using the largest MgII absorber sample and a new LRG sample from SDSS DR7. We present the clustering signal of absorbers on projected scales r_p = 0.3-35 Mpc/h in four Wr(2796) bins spanning Wr(2796)=0.4-5.6A. We found that on average MgII absorbers reside in halos < log M_h > approx 12.1, similar to the halo mass of an L_* galaxy. We report that the weakest absorbers in our sample with W_r(2796)=0.4-1.1A reside in relatively massive halos with < log M_h > approx 12.5^{+0.6}_{-1.3}, while stronger absorbers reside in halos of similar or lower masses < log M_h > approx 11.6^{+0.9}. We compared our bias data points, b, and the frequency distribution function of absorbers, f_{W_r}, with a simple model incorporating an isothermal density profile to mimic the distribution of absorbing gas in halos. We also compared the bias data points with Tinker & Chen (2008) who developed halo occupation distribution models of MgII absorbers that are constrained by b and f_{W_r}. The simple isothermal model can be ruled at a approx 2.8sigma level mostly because of its inability to reproduce f_{W_r}. However, b values are consistent with both models, including TC08. In addition, we show that the mean b of absorbers does not decrease beyond W_r(2796) approx 1.6A. The flat or potential upturn of b for Wr(2796) gtrsim 1.6A absorbers suggests the presence of additional cool gas in massive halos.



قيم البحث

اقرأ أيضاً

We report 4 new detections of 21-cm absorption from a systematic search of 21-cm absorption in a sample of 17 strong (Wr(MgII 2796)>1A) intervening MgII absorbers at 0.5<z<1.5. We also present 20-cm milliarcsecond scale maps of 40 quasars having 42 i ntervening strong MgII absorbers for which we have searched for 21-cm absorption. Combining 21-cm absorption measurements for 50 strong MgII systems from our surveys with the measurements from literature, we obtain a sample of 85 strong MgII absorbers at 0.5<z<1 and 1.1<z<1.5. We present detailed analysis of this sample, taking into account the effect of the varying 21-cm optical depth sensitivity and covering factor associated with the different quasar sight lines. We find that the 21-cm detection rate is higher towards the quasars with flat or inverted spectral index at cm wavelengths. About 70% of 21-cm detections are towards the quasars with linear size, LS<100 pc. The 21-cm absorption lines having velocity widths, DeltaV>100 km/s are mainly seen towards the quasars with extended radio morphology at arcsecond scales. However, we do not find any correlation between the integrated 21-cm optical depth or DeltaV with the LS measured from the milliarcsecond scale images. All this can be understood if the absorbing gas is patchy with a typical correlation length of ~30-100 pc. We show that within the measurement uncertainty, the 21-cm detection rate in strong MgII systems is constant over 0.5<z<1.5, i.e., over ~30% of the total age of universe. We show that the detection rate can be underestimated by up to a factor 2 if 21-cm optical depths are not corrected for the partial coverage estimated using milliarcsecond scale maps. Since stellar feedback processes are expected to diminish the filling factor of cold neutral medium over 0.5<z<1, this lack of evolution in the 21-cm detection rate in strong MgII absorbers is intriguing. [abridged]
Based on galaxies from the Sloan Digital Sky Survey (SDSS) and subhalos in the corresponding reconstructed region from the constrained simulation of ELUCID, we study the alignment of central galaxies relative to their host groups in the group catalog , as well as the alignment relative to the corresponding subhalos in the ELUCID simulation. Galaxies in observation are matched to dark matter subhalos in the ELUCID simulation using a novel neighborhood abundance matching method. In observation, the major axes of galaxies are found to be preferentially aligned to the major axes of their host groups. There is a color dependence of galaxy-group alignment that red centrals have a stronger alignment along the major axes of their host groups than blue centrals. Combining galaxies in observation and subhalos in the ELUCID simulation, we also find that central galaxies have their major axes to be aligned to the major axes of their corresponding subhalos in the ELUCID simulation. We find that the galaxy-group and galaxy-subhalo alignment signals are stronger for galaxies in more massive halos. We find that the alignments between main subhalos and the SDSS matched subhalo systems in simulation are slightly stronger than the galaxy-group alignments in observation.
255 - Brice Menard 2005
Using a large sample of MgII absorbers with 0.4<z<2.2 detected by Nestor et al (2005) in the Early Data Release of the SDSS, we present new constraints on the physical properties of these systems based on two statistical analyses: (i) By computing th e ratio between the composite spectra of quasars with and without absorbers, we measure the reddening effects induced by these intervening systems; and (ii) by stacking SDSS images centered on quasars with strong MgII absorption lines and isolating the excess light around the PSF, we measure the mean luminosity and colors of the absorbing galaxies. This statistical approach does not require any spectroscopic follow up and allows us to constrain the photometric properties of absorber systems.
129 - Liangping Tu , Ali Luo , Fuchao Wu 2009
The letter presents 25 discovered supernova candidates from SDSS-DR7 with our dedicated method, called Sample Decrease, and 10 of them were confirmed by other research groups, and listed in this letter. Another 15 are first discovered including 14 ty pe Ia and one type II based on Supernova Identification (SNID) analysis. The results proved that our method is reliable, and the description of the method and some detailed spectra analysis procedures were also presented in this letter.
Using a sample of galaxy groups selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7), we examine the alignment between the orientation of galaxies and their surrounding large scale structure in the context of the cosmic web. The latte r is quantified using the large-scale tidal field, reconstructed from the data using galaxy groups above a certain mass threshold. We find that the major axes of galaxies in filaments tend to be preferentially aligned with the directions of the filaments, while galaxies in sheets have their major axes preferentially aligned parallel to the plane of the sheets. The strength of this alignment signal is strongest for red, central galaxies, and in good agreement with that of dark matter halos in N-body simulations. This suggests that red, central galaxies are well aligned with their host halos, in quantitative agreement with previous studies based on the spatial distribution of satellite galaxies. There is a luminosity and mass dependence that brighter and more massive galaxies in filaments and sheets have stronger alignment signals. We also find that the orientation of galaxies is aligned with the eigenvector associated with the smallest eigenvalue of the tidal tensor. These observational results indicate that galaxy formation is affected by large-scale environments, and strongly suggests that galaxies are aligned with each other over scales comparable to those of sheets and filaments in the cosmic web.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا