ﻻ يوجد ملخص باللغة العربية
In this brief paper, we study the value function in maximum hands-off control. Maximum hands-off control, also known as sparse control, is the L0-optimal control among the admissible controls. Although the L0 measure is discontinuous and non- convex, we prove that the value function, or the minimum L0 norm of the control, is a continuous and strictly convex function of the initial state in the reachable set, under an assumption on the controlled plant model. This property is important, in particular, for discussing the sensitivity of the optimality against uncertainties in the initial state, and also for investigating the stability by using the value function as a Lyapunov function in model predictive control.
Maximum hands-off control is a control that has the minimum L0 norm among all feasible controls. It is known that the maximum hands-off (or L0-optimal) control problem is equivalent to the L1-optimal control under the assumption of normality. In this
We prove the continuity of the value function of the sparse optimal control problem. The sparse optimal control is a control whose support is minimum among all admissible controls. Under the normality assumption, it is known that a sparse optimal con
For his work in the economics of climate change, Professor William Nordhaus was a co-recipient of the 2018 Nobel Memorial Prize for Economic Sciences. A core component of the work undertaken by Nordhaus is the Dynamic Integrated model of Climate and
We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instan
We study the new concept of relative coobservability in decentralized supervisory control of discrete-event systems under partial observation. This extends our previous work on relative observability from a centralized setup to a decentralized one. A