ﻻ يوجد ملخص باللغة العربية
Maximum hands-off control is a control that has the minimum L0 norm among all feasible controls. It is known that the maximum hands-off (or L0-optimal) control problem is equivalent to the L1-optimal control under the assumption of normality. In this article, we analyze the maximum hands-off control for linear time-invariant systems without the normality assumption. For this purpose, we introduce the Lp-optimal control with 0<p<1, which is a natural relaxation of the L0 problem. By using this, we investigate the existence and the bang-off-bang property (i.e. the control takes values of 1, 0 and -1) of the maximum hands-off control. We then describe a general relation between the maximum hands-off control and the L1-optimal control. We also prove the continuity and convexity property of the value function, which plays an important role to prove the stability when the (finite-horizon) control is extended to model predictive control.
In this brief paper, we study the value function in maximum hands-off control. Maximum hands-off control, also known as sparse control, is the L0-optimal control among the admissible controls. Although the L0 measure is discontinuous and non- convex,
We present an algorithm for controlling and scheduling multiple linear time-invariant processes on a shared bandwidth limited communication network using adaptive sampling intervals. The controller is centralized and computes at every sampling instan
Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent techn
For his work in the economics of climate change, Professor William Nordhaus was a co-recipient of the 2018 Nobel Memorial Prize for Economic Sciences. A core component of the work undertaken by Nordhaus is the Dynamic Integrated model of Climate and
A stochastic model predictive control (SMPC) approach is presented for discrete-time linear systems with arbitrary time-invariant probabilistic uncertainties and additive Gaussian process noise. Closed-loop stability of the SMPC approach is establish