ﻻ يوجد ملخص باللغة العربية
We prove the continuity of the value function of the sparse optimal control problem. The sparse optimal control is a control whose support is minimum among all admissible controls. Under the normality assumption, it is known that a sparse optimal control is given by L^1 optimal control. Furthermore, the value function of the sparse optimal control problem is identical with that of the L1-optimal control problem. From these properties, we prove the continuity of the value function of the sparse optimal control problem by verifying that of the L1-optimal control problem.
In this brief paper, we study the value function in maximum hands-off control. Maximum hands-off control, also known as sparse control, is the L0-optimal control among the admissible controls. Although the L0 measure is discontinuous and non- convex,
For his work in the economics of climate change, Professor William Nordhaus was a co-recipient of the 2018 Nobel Memorial Prize for Economic Sciences. A core component of the work undertaken by Nordhaus is the Dynamic Integrated model of Climate and
Flexible loads, e.g. thermostatically controlled loads (TCLs), are technically feasible to participate in demand response (DR) programs. On the other hand, there is a number of challenges that need to be resolved before it can be implemented in pract
This article treats two problems dealing with control of linear systems in the presence of a jammer that can sporadically turn off the control signal. The first problem treats the standard reachability problem, and the second treats the standard line
The paper studies approximations and control of a processor sharing (PS) server where the service rate depends on the number of jobs occupying the server. The control of such a system is implemented by imposing a limit on the number of jobs that can