ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimizing for an arbitrary perfect entangler. II. Application

54   0   0.0 ( 0 )
 نشر من قبل Christiane Koch
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The difficulty of an optimization task in quantum information science depends on the proper mathematical expression of the physical target. Here we demonstrate the power of optimization functionals targeting an arbitrary perfect two-qubit entangler, creating a maximally-entangled state out of some initial product state. For two quantum information platforms of current interest, nitrogen vacancy centers in diamond and superconducting Josephson junctions, we show that an arbitrary perfect entangler can be reached faster and with higher fidelity than specific two-qubit gates or local equivalence classes of two-qubit gates. Our results are obtained with two independent optimization approaches, underlining the crucial role of the optimization target.


قيم البحث

اقرأ أيضاً

Optimal control theory is a powerful tool for improving figures of merit in quantum information tasks. Finding the solution to any optimal control problem via numerical optimization depends crucially on the choice of the optimization functional. Here , we derive a functional that targets the full set of two-qubit perfect entanglers, gates capable of creating a maximally-entangled state out of some initial product state. The functional depends on easily-computable local invariants and uniquely determines when a gate evolves into a perfect entangler. Optimization with our functional is most useful if the two-qubit dynamics allows for the implementation of more than one perfect entangler. We discuss the reachable set of perfect entanglers for a generic Hamiltonian that corresponds to several quantum information platforms of current interest.
74 - Bing He , Yuhang Ren , 2009
We propose a setup that transforms a photon pair in arbitrary rank-four mixed state, which could also be unknown, to a Bell state. The setup involves two linear optical circuits processing the individual photons and a parity gate working with weak cr oss-Kerr nonlinearity. By the photon number resolving detection on one of the output quantum bus or communication beams, the setup will realize a near deterministic transformation to a Bell state for every entangling attempt. With the simple threshold detectors, on the other hand, the system can still reach a considerable success probability of 0.5 per try. The decoherence effect caused by photon absorption losses in the operation is also discussed.
Quilc is an open-source, optimizing compiler for gate-based quantum programs written in Quil or QASM, two popular quantum programming languages. The compiler was designed with attention toward NISQ-era quantum computers, specifically recognizing that each quantum gate has a non-negligible and often irrecoverable cost toward a programs successful execution. Quilcs primary goal is to make authoring quantum software a simpler exercise by making architectural details less burdensome to the author. Using Quilc allows one to write programs faster while usually not compromising---and indeed sometimes improving---their execution fidelity on a given hardware architecture. In this paper, we describe many of the principles behind Quilcs design, and demonstrate the compiler with various examples.
We propose a measure of entanglement that can be computed for any pure state of an $M$-qubit system. The entanglement measure has the form of a distance that we derive from an adapted application of the Fubini-Study metric. This measure is invariant under local unitary transformations and defined as trace of a suitable metric that we derive, the entanglement metric $tilde{g}$. Furthermore, the analysis of the eigenvalues of $tilde{g}$ gives information about the robustness of entanglement.
A fundamental requirement in the circuit model of quantum information processing is the realization of fault-tolerant multi-qubit quantum gates with entangling capabilities. A key step towards this end is to achieve control of qubit states through ge ometric phases at very small spatial scales in an effective and feasible way. A spin-electric coupling present in antiferromagnetic triangular single-molecule magnets (SMMs) allows for manipulation of the spin (qubit) states with a great flexibility. Here, we establish an all-electrical two-qubit geometric phase shift gate acting on the four-fold ground state manifold of a triangular SMM, which represents an effective two-qubit state space. We show that a two-qubit quantum gate with arbitrary entangling power can be achieved through the Berry phase effect, induced by adiabatically varying an external electric field in the plane of the molecule.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا