ترغب بنشر مسار تعليمي؟ اضغط هنا

An Open-Source, Industrial-Strength Optimizing Compiler for Quantum Programs

59   0   0.0 ( 0 )
 نشر من قبل Robert Smith
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Quilc is an open-source, optimizing compiler for gate-based quantum programs written in Quil or QASM, two popular quantum programming languages. The compiler was designed with attention toward NISQ-era quantum computers, specifically recognizing that each quantum gate has a non-negligible and often irrecoverable cost toward a programs successful execution. Quilcs primary goal is to make authoring quantum software a simpler exercise by making architectural details less burdensome to the author. Using Quilc allows one to write programs faster while usually not compromising---and indeed sometimes improving---their execution fidelity on a given hardware architecture. In this paper, we describe many of the principles behind Quilcs design, and demonstrate the compiler with various examples.



قيم البحث

اقرأ أيضاً

In this paper, we propose a novel quantum compiler optimization, named relaxed peephole optimization (RPO) for quantum computers. RPO leverages the single-qubit state information that can be determined statically by the compiler. We define that a qub it is in a basis state when, at a given point in time, its state is either in the X-, Y-, or Z-basis. When basis qubits are used as inputs to quantum gates, there exist opportunities for strength reduction, which replaces quantum operations with equivalent but less expensive ones. Compared to the existing peephole optimization for quantum programs, the difference is that our proposed optimization does not require an identical unitary matrix, thereby named `relaxed peephole optimization. We also extend our approach to optimize the quantum gates when some input qubits are in known pure states. Both optimizations, namely the Quantum Basis-state Optimization (QBO) and the Quantum Pure-state Optimization (QPO), are implemented in the IBMs Qiskit transpiler. Our experimental results show that our proposed optimization pass is fast and effective. The circuits optimized with our compiler optimizations obtain up to 18.0% (11.7% on average) fewer CNOT gates and up to 8.2% (7.1% on average) lower transpilation time than that of the most aggressive optimization level in the Qiskit compiler. When running on real quantum computers, the success rates of 3-qubit quantum phase estimation algorithm improve by 2.30X due to the reduced gate counts.
Familia is an open-source toolkit for pragmatic topic modeling in industry. Familia abstracts the utilities of topic modeling in industry as two paradigms: semantic representation and semantic matching. Efficient implementations of the two paradigms are made publicly available for the first time. Furthermore, we provide off-the-shelf topic models trained on large-scale industrial corpora, including Latent Dirichlet Allocation (LDA), SentenceLDA and Topical Word Embedding (TWE). We further describe typical applications which are successfully powered by topic modeling, in order to ease the confusions and difficulties of software engineers during topic model selection and utilization.
We introduce ProjectQ, an open source software effort for quantum computing. The first release features a compiler framework capable of targeting various types of hardware, a high-performance simulator with emulation capabilities, and compiler plug-i ns for circuit drawing and resource estimation. We introduce our Python-embedded domain-specific language, present the features, and provide example implementations for quantum algorithms. The framework allows testing of quantum algorithms through simulation and enables running them on actual quantum hardware using a back-end connecting to the IBM Quantum Experience cloud service. Through extension mechanisms, users can provide back-ends to further quantum hardware, and scientists working on quantum compilation can provide plug-ins for additional compilation, optimization, gate synthesis, and layout strategies.
We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object cl ass, and then passed on to a choice of master equation or Monte-Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well-suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction.
The numerical solution of partial differential equations using the finite element method is one of the key applications of high performance computing. Local assembly is its characteristic operation. This entails the execution of a problem-specific ke rnel to numerically evaluate an integral for each element in the discretized problem domain. Since the domain size can be huge, executing efficient kernels is fundamental. Their op- timization is, however, a challenging issue. Even though affine loop nests are generally present, the short trip counts and the complexity of mathematical expressions make it hard to determine a single or unique sequence of successful transformations. Therefore, we present the design and systematic evaluation of COF- FEE, a domain-specific compiler for local assembly kernels. COFFEE manipulates abstract syntax trees generated from a high-level domain-specific language for PDEs by introducing domain-aware composable optimizations aimed at improving instruction-level parallelism, especially SIMD vectorization, and register locality. It then generates C code including vector intrinsics. Experiments using a range of finite-element forms of increasing complexity show that significant performance improvement is achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا