ترغب بنشر مسار تعليمي؟ اضغط هنا

Contact-induced charge contributions to non-local spin transport measurements in Co/MgO/graphene devices

122   0   0.0 ( 0 )
 نشر من قبل Bernd Beschoten
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, it has been shown that oxide barriers in graphene-based non-local spin-valve structures can be the bottleneck for spin transport. The barriers may cause spin dephasing during or right after electrical spin injection which limit spin transport parameters such as the spin lifetime of the whole device. An important task is to evaluate the quality of the oxide barriers of both spin injection and detection contacts in a fabricated device. To address this issue, we discuss the influence of spatially inhomogeneous oxide barriers and especially conducting pinholes within the barrier on the background signal in non-local measurements of graphene/MgO/Co spin-valve devices. By both simulations and reference measurements on devices with non-ferromagnetic electrodes, we demonstrate that the background signal can be caused by inhomogeneous current flow through the oxide barriers. As a main result, we demonstrate the existence of charge accumulation next to the actual spin accumulation signal in non-local voltage measurements, which can be explained by a redistribution of charge carriers by a perpendicular magnetic field similar to the classical Hall effect. Furthermore, we present systematic studies on the phase of the low frequency non-local ac voltage signal which is measured in non-local spin measurements when applying ac lock-in techniques. This phase has so far widely been neglected in the analysis of non-local spin transport. We demonstrate that this phase is another hallmark of the homogeneity of the MgO spin injection and detection barriers. We link backgate dependent changes of the phase to the interplay between the capacitance of the oxide barrier to the quantum capacitance of graphene.



قيم البحث

اقرأ أيضاً

We investigate spin and charge transport in both single and bilayer graphene non-local spin-valve devices. Similar to previous studies on bilayer graphene, we observe an inverse dependence of the spin lifetime on the carrier mobility in our single la yer devices. This general trend is only observed in devices with large contact resistances. Furthermore, we observe a second Dirac peak in devices with long spin lifetimes. This results from charge transport underneath the contacts. In contrast, all devices with low ohmic contact resistances only exhibit a single Dirac peak. Additionally, the spin lifetime is significantly reduced indicating that an additional spin dephasing occurs underneath the electrodes.
In this review we discuss spin and charge transport properties in graphene-based single-layer and few-layer spin-valve devices. We give an overview of challenges and recent advances in the field of device fabrication and discuss two of our fabricatio n methods in more detail which result in distinctly different device performances. In the first class of devices, Co/MgO electrodes are directly deposited onto graphene which results in rough MgO-to-Co interfaces and favor the formation of conducting pinholes throughout the MgO layer. We show that the contact resistance area product (R$_c$A) is a benchmark for spin transport properties as it scales with the measured spin lifetime in these devices indicating that contact-induced spin dephasing is the bottleneck for spin transport even in devices with large R$_c$A values. In a second class of devices, Co/MgO electrodes are first patterned onto a silicon substrate. Subsequently, a graphene-hBN heterostructure is directly transferred onto these prepatterned electrodes which provides improved interface properties. This is seen by a strong enhancement of both charge and spin transport properties yielding charge carrier mobilities exceeding 20000 cm$^2$/(Vs) and spin lifetimes up to 3.7 ns at room temperature. We discuss several shortcomings in the determination of both quantities which complicates the analysis of both extrinsic and intrinsic spin scattering mechanisms. Furthermore, we show that contacts can be the origin of a second charge neutrality point in gate dependent resistance measurements which is influenced by the quantum capacitance of the underlying graphene layer.
By successive oxygen treatments of graphene non-local spin-valve devices we achieve a gradual increase of the contact resistance area products ($R_cA$) of Co/MgO spin injection and detection electrodes and a transition from linear to non-linear chara cteristics in the respective differential dV-dI-curves. With this manipulation of the contacts both spin lifetime and amplitude of the spin signal can significantly be increased by a factor of seven in the same device. This demonstrates that contact-induced spin dephasing is the bottleneck for spin transport in graphene devices with small $R_cA$ values. With increasing $R_cA$ values, we furthermore observe the appearance of a second charge neutrality point (CNP) in gate dependent resistance measurements. Simultaneously, we observe a decrease of the gate voltage separation between the two CNPs. The strong enhancement of the spin transport properties as well as the changes in charge transport are explained by a gradual suppression of a Co/graphene interaction by improving the oxide barrier during oxygen treatment.
We fabricated a non-local spin valve device with Co-MgO injector/detector tunnel contacts on a graphene spin channel. In this device, the spin polarization of the injector contact can be tuned by both the injector current bias and the gate voltage. T he spin polarization can be turned off and even inverted. This behavior enables a spin transistor where the signal is switched off by turning off the spin injection using the field-effect. We propose a model based on a gate-dependent shift of the minimum in the graphene density of states with respect to the tunneling density of states of cobalt, which can explain the observed bias and gate dependence.
Growth of large-scale graphene is still accompanied by imperfections. By means of a four-tip STM/SEM the local structure of graphene grown on SiC(0001) was correlated with scanning electron microscope images and spatially resolved transport measureme nts. The systematic variation of probe spacings and substrate temperature has clearly revealed two-dimensional transport regimes of Anderson localization as well as of diffusive transport. The detailed analysis of the temperature dependent data demonstrates that the local on-top nano-sized contacts do not induce significant strain to the epitaxial graphene films.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا