ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of MgO barriers for spin and charge transport in Co/MgO/graphene non-local spin-valve devices

159   0   0.0 ( 0 )
 نشر من قبل Bernd Beschoten
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate spin and charge transport in both single and bilayer graphene non-local spin-valve devices. Similar to previous studies on bilayer graphene, we observe an inverse dependence of the spin lifetime on the carrier mobility in our single layer devices. This general trend is only observed in devices with large contact resistances. Furthermore, we observe a second Dirac peak in devices with long spin lifetimes. This results from charge transport underneath the contacts. In contrast, all devices with low ohmic contact resistances only exhibit a single Dirac peak. Additionally, the spin lifetime is significantly reduced indicating that an additional spin dephasing occurs underneath the electrodes.



قيم البحث

اقرأ أيضاً

Recently, it has been shown that oxide barriers in graphene-based non-local spin-valve structures can be the bottleneck for spin transport. The barriers may cause spin dephasing during or right after electrical spin injection which limit spin transpo rt parameters such as the spin lifetime of the whole device. An important task is to evaluate the quality of the oxide barriers of both spin injection and detection contacts in a fabricated device. To address this issue, we discuss the influence of spatially inhomogeneous oxide barriers and especially conducting pinholes within the barrier on the background signal in non-local measurements of graphene/MgO/Co spin-valve devices. By both simulations and reference measurements on devices with non-ferromagnetic electrodes, we demonstrate that the background signal can be caused by inhomogeneous current flow through the oxide barriers. As a main result, we demonstrate the existence of charge accumulation next to the actual spin accumulation signal in non-local voltage measurements, which can be explained by a redistribution of charge carriers by a perpendicular magnetic field similar to the classical Hall effect. Furthermore, we present systematic studies on the phase of the low frequency non-local ac voltage signal which is measured in non-local spin measurements when applying ac lock-in techniques. This phase has so far widely been neglected in the analysis of non-local spin transport. We demonstrate that this phase is another hallmark of the homogeneity of the MgO spin injection and detection barriers. We link backgate dependent changes of the phase to the interplay between the capacitance of the oxide barrier to the quantum capacitance of graphene.
In this review we discuss spin and charge transport properties in graphene-based single-layer and few-layer spin-valve devices. We give an overview of challenges and recent advances in the field of device fabrication and discuss two of our fabricatio n methods in more detail which result in distinctly different device performances. In the first class of devices, Co/MgO electrodes are directly deposited onto graphene which results in rough MgO-to-Co interfaces and favor the formation of conducting pinholes throughout the MgO layer. We show that the contact resistance area product (R$_c$A) is a benchmark for spin transport properties as it scales with the measured spin lifetime in these devices indicating that contact-induced spin dephasing is the bottleneck for spin transport even in devices with large R$_c$A values. In a second class of devices, Co/MgO electrodes are first patterned onto a silicon substrate. Subsequently, a graphene-hBN heterostructure is directly transferred onto these prepatterned electrodes which provides improved interface properties. This is seen by a strong enhancement of both charge and spin transport properties yielding charge carrier mobilities exceeding 20000 cm$^2$/(Vs) and spin lifetimes up to 3.7 ns at room temperature. We discuss several shortcomings in the determination of both quantities which complicates the analysis of both extrinsic and intrinsic spin scattering mechanisms. Furthermore, we show that contacts can be the origin of a second charge neutrality point in gate dependent resistance measurements which is influenced by the quantum capacitance of the underlying graphene layer.
By successive oxygen treatments of graphene non-local spin-valve devices we achieve a gradual increase of the contact resistance area products ($R_cA$) of Co/MgO spin injection and detection electrodes and a transition from linear to non-linear chara cteristics in the respective differential dV-dI-curves. With this manipulation of the contacts both spin lifetime and amplitude of the spin signal can significantly be increased by a factor of seven in the same device. This demonstrates that contact-induced spin dephasing is the bottleneck for spin transport in graphene devices with small $R_cA$ values. With increasing $R_cA$ values, we furthermore observe the appearance of a second charge neutrality point (CNP) in gate dependent resistance measurements. Simultaneously, we observe a decrease of the gate voltage separation between the two CNPs. The strong enhancement of the spin transport properties as well as the changes in charge transport are explained by a gradual suppression of a Co/graphene interaction by improving the oxide barrier during oxygen treatment.
Graphene - a single atomic layer of graphite - is a recently-found two-dimensional form of carbon, which exhibits high crystal quality and ballistic electron transport at room temperature. Soft magnetic NiFe electrodes have been used to inject polari zed spins into graphene and a 10% change in resistance has been observed as the electrodes switch from the parallel to the antiparallel state. This coupled with the fact that a field effect electrode can modulate the conductivity of these graphene films makes them exciting potential candidates for spin electronic devices.
Hydrogen adsorbates in graphene are interesting as they are not only strong Coulomb scatterers but they also induce a change in orbital hybridization of the carbon network from sp^2 into sp^3. This change increases the spin-orbit coupling and is expe cted to largely modify spin relaxation. In this work we report the change in spin transport properties of graphene due to plasma hydrogenation. We observe an up to three-fold increase of spin relaxation time tau_S after moderate hydrogen exposure. This increase of tau_S is accompanied by the decrease of charge and spin diffusion coefficients, resulting in a minor change in spin relaxation length lambda_S. At high carrier density we obtain lambda_S of 7 microns, which allows for spin detection over a distance of 11 microns. After hydrogenation a value of tau_S as high as 2.7 ns is measured at room temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا