ﻻ يوجد ملخص باللغة العربية
We study the diffusion of epidemics on networks that are partitioned into local communities. The gross structure of hierarchical networks of this kind can be described by a quotient graph. The rationale of this approach is that individuals infect those belonging to the same community with higher probability than individuals in other communities. In community models the nodal infection probability is thus expected to depend mainly on the interaction of a few, large interconnected clusters. In this work, we describe the epidemic process as a continuous-time individual-based susceptible-infected-susceptible (SIS) model using a first-order mean-field approximation. A key feature of our model is that the spectral radius of this smaller quotient graph (which only captures the macroscopic structure of the community network) is all we need to know in order to decide whether the overall healthy-state defines a globally asymptotically stable or an unstable equilibrium. Indeed, the spectral radius is related to the epidemic threshold of the system. Moreover we prove that, above the threshold, another steady-state exists that can be computed using a lower-dimensional dynamical system associated with the evolution of the process on the quotient graph. Our investigations are based on the graph-theoretical notion of equitable partition and of its recent and rather flexible generalization, that of almost equitable partition.
Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e. random graphs with a block
Core-periphery structure is an emerging property of a wide range of complex systems and indicate the presence of group of actors in the system with an higher number of connections among them and a lower number of connections with a sparsely connected
The (COVID-19) pandemic-induced restrictions on travel and social gatherings have prompted most conference organizers to move their events online. However, in contrast to physical conferences, virtual conferences face a challenge in efficiently sched
In this paper, we analyze dynamic switching networks, wherein the networks switch arbitrarily among a set of topologies. For this class of dynamic networks, we derive an epidemic threshold, considering the SIS epidemic model. First, an epidemic proba
We introduce a novel method for defining geographic districts in road networks using stable matching. In this approach, each geographic district is defined in terms of a center, which identifies a location of interest, such as a post office or pollin