ترغب بنشر مسار تعليمي؟ اضغط هنا

Defining Equitable Geographic Districts in Road Networks via Stable Matching

58   0   0.0 ( 0 )
 نشر من قبل Nil Mamano
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce a novel method for defining geographic districts in road networks using stable matching. In this approach, each geographic district is defined in terms of a center, which identifies a location of interest, such as a post office or polling place, and all other network vertices must be labeled with the center to which they are associated. We focus on defining geographic districts that are equitable, in that every district has the same number of vertices and the assignment is stable in terms of geographic distance. That is, there is no unassigned vertex-center pair such that both would prefer each other over their current assignments. We solve this problem using a version of the classic stable matching problem, called symmetric stable matching, in which the preferences of the elements in both sets obey a certain symmetry. In our case, we study a graph-based version of stable matching in which nodes are stably matched to a subset of nodes denoted as centers, prioritized by their shortest-path distances, so that each center is apportioned a certain number of nodes. We show that, for a planar graph or road network with $n$ nodes and $k$ centers, the problem can be solved in $O(nsqrt{n}log n)$ time, which improves upon the $O(nk)$ runtime of using the classic Gale-Shapley stable matching algorithm when $k$ is large. Finally, we provide experimental results on road networks for these algorithms and a heuristic algorithm that performs better than the Gale-Shapley algorithm for any range of values of $k$.



قيم البحث

اقرأ أيضاً

We study a natural generalization of stable matching to the maximum weight stable matching problem and we obtain a combinatorial polynomial time algorithm for it by reducing it to the problem of finding a maximum weight ideal cut in a DAG. We give th e first polynomial time algorithm for the latter problem; this algorithm is also combinatorial. The combinatorial nature of our algorithms not only means that they are efficient but also that they enable us to obtain additional structural and algorithmic results: - We show that the set, $cal M$, of maximum weight stable matchings forms a sublattice $cal L$ of the lattice $cal L$ of all stable matchings. - We give an efficient algorithm for finding boy-optimal and girl-optimal matchings in $cal M$. - We generalize the notion of rotation, a central structural notion in the context of the stable matching problem, to meta-rotation. Just as rotations help traverse the lattice of all stable matchings, macro-rotations help traverse the sublattice over $cal M$.
We study a discrete version of a geometric stable marriage problem originally proposed in a continuous setting by Hoffman, Holroyd, and Peres, in which points in the plane are stably matched to cluster centers, as prioritized by their distances, so t hat each cluster center is apportioned a set of points of equal area. We show that, for a discretization of the problem to an $ntimes n$ grid of pixels with $k$ centers, the problem can be solved in time $O(n^2 log^5 n)$, and we experiment with two slower but more practical algorithms and a hybrid method that switches from one of these algorithms to the other to gain greater efficiency than either algorithm alone. We also show how to combine geometric stable matchings with a $k$-means clustering algorithm, so as to provide a geometric political-districting algorithm that views distance in economic terms, and we experiment with weight
Given a stream of food orders and available delivery vehicles, how should orders be assigned to vehicles so that the delivery time is minimized? Several decisions have to be made: (1) assignment of orders to vehicles, (2) grouping orders into batches to cope with limited vehicle availability, and (3) adapting to dynamic positions of delivery vehicles. We show that the minimization problem is not only NP-hard but inapproximable in polynomial time. To mitigate this computational bottleneck, we develop an algorithm called FoodMatch, which maps the vehicle assignment problem to that of minimum weight perfect matching on a bipartite graph. To further reduce the quadratic construction cost of the bipartite graph, we deploy best-first search to only compute a subgraph that is highly likely to contain the minimum matching. The solution quality is further enhanced by reducing batching to a graph clustering problem and anticipating dynamic positions of vehicles through angular distance. Extensive experiments on food-delivery data from large metropolitan cities establish that FoodMatch is substantially better than baseline strategies on a number of metrics, while being efficient enough to handle real-world workloads.
We study the diffusion of epidemics on networks that are partitioned into local communities. The gross structure of hierarchical networks of this kind can be described by a quotient graph. The rationale of this approach is that individuals infect tho se belonging to the same community with higher probability than individuals in other communities. In community models the nodal infection probability is thus expected to depend mainly on the interaction of a few, large interconnected clusters. In this work, we describe the epidemic process as a continuous-time individual-based susceptible-infected-susceptible (SIS) model using a first-order mean-field approximation. A key feature of our model is that the spectral radius of this smaller quotient graph (which only captures the macroscopic structure of the community network) is all we need to know in order to decide whether the overall healthy-state defines a globally asymptotically stable or an unstable equilibrium. Indeed, the spectral radius is related to the epidemic threshold of the system. Moreover we prove that, above the threshold, another steady-state exists that can be computed using a lower-dimensional dynamical system associated with the evolution of the process on the quotient graph. Our investigations are based on the graph-theoretical notion of equitable partition and of its recent and rather flexible generalization, that of almost equitable partition.
In this paper, we investigate stable matching in structured networks. Consider case of matching in social networks where candidates are not fully connected. A candidate on one side of the market gets acquaintance with which one on the heterogeneous s ide depends on the structured network. We explore four well-used structures of networks and define the social circle by the distance between each candidate. When matching within social circle, we have equilibrium distinguishes from each other since each social networks topology differs. Equilibrium changes with the change on topology of each network and it always converges to the same stable outcome as complete information algorithm if there is no block to reach anyone in agents social circle.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا