ترغب بنشر مسار تعليمي؟ اضغط هنا

Spectral partitioning in equitable graphs

85   0   0.0 ( 0 )
 نشر من قبل Paolo Barucca
 تاريخ النشر 2016
والبحث باللغة English
 تأليف Paolo Barucca




اسأل ChatGPT حول البحث

Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e. random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKays law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. Exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. Final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.



قيم البحث

اقرأ أيضاً

80 - Paolo Barucca 2019
Core-periphery structure is an emerging property of a wide range of complex systems and indicate the presence of group of actors in the system with an higher number of connections among them and a lower number of connections with a sparsely connected periphery. The dynamics of a complex system which is interacting on a given graph structure is strictly connected with the spectral properties of the graph itself, nevertheless it is generally extremely hard to obtain analytic results which will hold for arbitrary large systems. Recently a statistical ensemble of random graphs with a regular block structure, i.e. the ensemble of equitable graphs, has been introduced and analytic results have been derived in the computationally-hard context of graph partitioning and community detection. In this paper, we present a general analytic result for a ensemble of equitable core-periphery graphs, yielding a new explicit formula for the spectral density of networks with core-periphery structure.
We study the diffusion of epidemics on networks that are partitioned into local communities. The gross structure of hierarchical networks of this kind can be described by a quotient graph. The rationale of this approach is that individuals infect tho se belonging to the same community with higher probability than individuals in other communities. In community models the nodal infection probability is thus expected to depend mainly on the interaction of a few, large interconnected clusters. In this work, we describe the epidemic process as a continuous-time individual-based susceptible-infected-susceptible (SIS) model using a first-order mean-field approximation. A key feature of our model is that the spectral radius of this smaller quotient graph (which only captures the macroscopic structure of the community network) is all we need to know in order to decide whether the overall healthy-state defines a globally asymptotically stable or an unstable equilibrium. Indeed, the spectral radius is related to the epidemic threshold of the system. Moreover we prove that, above the threshold, another steady-state exists that can be computed using a lower-dimensional dynamical system associated with the evolution of the process on the quotient graph. Our investigations are based on the graph-theoretical notion of equitable partition and of its recent and rather flexible generalization, that of almost equitable partition.
Given a graph with millions of nodes, what patterns exist in the distributions of node characteristics, and how can we detect them and separate anomalous nodes in a way similar to human vision? In this paper, we propose a vision-guided algorithm, Eag leMine, to summarize micro-cluster patterns in two-dimensional histogram plots constructed from node features in a large graph. EagleMine utilizes a water-level tree to capture cluster structures according to vision-based intuition at multi-resolutions. EagleMine traverses the water-level tree from the root and adopts statistical hypothesis tests to determine the optimal clusters that should be fitted along the path, and summarizes each cluster with a truncated Gaussian distribution. Experiments on real data show that our method can find truncated and overlapped elliptical clusters, even when some baseline methods split one visual cluster into pieces with Gaussian spheres. To identify potentially anomalous microclusters, EagleMine also a designates score to measure the suspiciousness of outlier groups (i.e. node clusters) and outlier nodes, detecting bots and anomalous users with high accuracy in the real Microblog data.
In the era of big data, graph sampling is indispensable in many settings. Existing sampling methods are mostly designed for static graphs, and aim to preserve basic structural properties of the original graph (such as degree distribution, clustering coefficient etc.) in the sample. We argue that for any sampling method it is impossible to produce an universal representative sample which can preserve all the properties of the original graph; rather sampling should be application specific (such as preserving hubs - needed for information diffusion). Here we consider community detection as an application scenario. We propose ComPAS, a novel sampling strategy that unlike previous methods, is not only designed for streaming graphs (which is a more realistic representation of a real-world scenario) but also preserves the community structure of the original graph in the sample. Empirical results on both synthetic and different real-world graphs show that ComPAS is the best to preserve the underlying community structure with average performance reaching 73.2% of the most informed algorithm for static graphs.
Network science is a powerful tool for analyzing complex systems in fields ranging from sociology to engineering to biology. This paper is focused on generative models of large-scale bipartite graphs, also known as two-way graphs or two-mode networks . We propose two generative models that can be easily tuned to reproduce the characteristics of real-world networks, not just qualitatively, but quantitatively. The characteristics we consider are the degree distributions and the metamorphosis coefficient. The metamorphosis coefficient, a bipartite analogue of the clustering coefficient, is the proportion of length-three paths that participate in length-four cycles. Having a high metamorphosis coefficient is a necessary condition for close-knit community structure. We define edge, node, and degreewise metamorphosis coefficients, enabling a more detailed understanding of the bipartite connectivity that is not explained by degree distribution alone. Our first model, bipartite Chung-Lu (CL), is able to reproduce real-world degree distributions, and our second model, bipartite block two-level Erdos-Renyi (BTER), reproduces both the degree distributions as well as the degreewise metamorphosis coefficients. We demonstrate the effectiveness of these models on several real-world data sets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا