ترغب بنشر مسار تعليمي؟ اضغط هنا

Generation of maximally entangled charge-qubit arrays via a cavity mode

84   0   0.0 ( 0 )
 نشر من قبل Alexandre Guillaume
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe an assembly of N Cooper-pair boxes (CPB) contained in a single mode cavity. In the dispersive regime, the correlation between the cavity field and each Cooper-pair box results in an effective interaction between CPBs that can be used to dynamically generate maximally entangled states. With only collective manipulations, we show how to create maximally entangled quantum states and how to use these states to reach the Heisenberg limit in the determination of a spectroscopy frequency. This scheme can be applied to other types of superconducting qubits.

قيم البحث

اقرأ أيضاً

We demonstrate coherent control and measurement of a superconducting qubit coupled to a superconducting coplanar waveguide resonator with a dynamically tunable qubit-cavity coupling strength. Rabi oscillations are measured for several coupling streng ths showing that the qubit transition can be turned off by a factor of more than 1500. We show how the qubit can still be accessed in the off state via fast flux pulses. We perform pulse delay measurements with synchronized fast flux pulses on the device and observe $T_1$ and $T_2$ times of 1.6 and 1.9 $mu$s, respectively. This work demonstrates how this qubit can be incorporated into quantum computing architectures.
We propose and implement a novel scheme for dissipatively pumping two qubits into a singlet Bell state. The method relies on a process of collective optical pumping to an excited level, to which all states apart from the singlet are coupled. We apply the method to deterministically entangle two trapped ${}^{40}text{Ca}^+$ ions with a fidelity of $93(1)%$. We theoretically analyze the performance and error susceptibility of the scheme and find it to be insensitive to a large class of experimentally relevant noise sources.
We demonstrate enhancement of the dispersive frequency shift in a coplanar waveguide resonator induced by a capacitively-coupled superconducting flux qubit in the straddling regime. The magnitude of the observed shift, 80 MHz for the qubit-resonator detuning of 5 GHz, is quantitatively explained by the generalized Jaynes-Cummings model which takes into account the contribution of the qubit higher energy levels. By applying the enhanced dispersive shift to the qubit readout, we achieved 90% contrast of the Rabi oscillations which is mainly limited by the energy relaxation of the qubit.
We demonstrate quantum control and entanglement generation using a Landau-Zener beam splitter formed by coupling two transmon qubits to a superconducting cavity. Single passage through the cavity-mediated qubit-qubit avoided crossing provides a direc t test of the Landau-Zener transition formula. Consecutive sweeps result in Landau-Zener-Stuckelberg interference patterns, with a visibility that can be sensitively tuned by adjusting the level velocity through both the non-adiabatic and adiabatic regimes. Two-qubit state tomography indicates that a Bell state can be generated via a single passage, with a fidelity of 78% limited by qubit relaxation.
Generating on-demand maximally entangled states is one of the corner stones for quantum information processing. Parity measurements can serve to create Bell states and have been implemented via an electronic Mach-Zehnder interferometer among others. However, the entanglement generation is necessarily harmed by measurement induced dephasing processes in one of the two parity subspace. In this work, we propose two different schemes of continuous feedback for a parity measurement. They enable us to avoid both the measurement-induced dephasing process and the experimentally unavoidable dephasing, e.g. due to fluctuations of the gate voltages controlling the initialization of the qubits. We show that we can generate maximally entangled steady states in both parity subspaces. Importantly, the measurement scheme we propose is valid for implementation of parity measurements with feedback loops in various solid-state environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا