ﻻ يوجد ملخص باللغة العربية
We describe an assembly of N Cooper-pair boxes (CPB) contained in a single mode cavity. In the dispersive regime, the correlation between the cavity field and each Cooper-pair box results in an effective interaction between CPBs that can be used to dynamically generate maximally entangled states. With only collective manipulations, we show how to create maximally entangled quantum states and how to use these states to reach the Heisenberg limit in the determination of a spectroscopy frequency. This scheme can be applied to other types of superconducting qubits.
We demonstrate coherent control and measurement of a superconducting qubit coupled to a superconducting coplanar waveguide resonator with a dynamically tunable qubit-cavity coupling strength. Rabi oscillations are measured for several coupling streng
We propose and implement a novel scheme for dissipatively pumping two qubits into a singlet Bell state. The method relies on a process of collective optical pumping to an excited level, to which all states apart from the singlet are coupled. We apply
We demonstrate enhancement of the dispersive frequency shift in a coplanar waveguide resonator induced by a capacitively-coupled superconducting flux qubit in the straddling regime. The magnitude of the observed shift, 80 MHz for the qubit-resonator
We demonstrate quantum control and entanglement generation using a Landau-Zener beam splitter formed by coupling two transmon qubits to a superconducting cavity. Single passage through the cavity-mediated qubit-qubit avoided crossing provides a direc
Generating on-demand maximally entangled states is one of the corner stones for quantum information processing. Parity measurements can serve to create Bell states and have been implemented via an electronic Mach-Zehnder interferometer among others.