ترغب بنشر مسار تعليمي؟ اضغط هنا

Bohr--Sommerfeld Lagrangians of moduli spaces of Higgs bundles

254   0   0.0 ( 0 )
 نشر من قبل Indranil Biswas
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $X$ be a compact connected Riemann surface of genus at least two. Let $M_H(r,d)$ denote the moduli space of semistable Higgs bundles on $X$ of rank $r$ and degree $d$. We prove that the compact complex Bohr-Sommerfeld Lagrangians of $M_H(r,d)$ are precisely the irreducible components of the nilpotent cone in $M_H(r,d)$. This generalizes to Higgs $G$-bundles and also to the parabolic Higgs bundles.



قيم البحث

اقرأ أيضاً

119 - Indranil Biswas 2021
Let X be a compact connected Riemann surface of genus g > 0 equipped with a nonzero holomorphic 1-form. Let M denote the moduli space of semistable Higgs bundles on X of rank r and degree r(g-1)+1; it is a complex symplectic manifold. Using the trans lation structure on the open subset of X where the 1-form does not vanish, we construct a natural deformation quantization of a certain nonempty Zariski open subset of M.
Let $X$ be a compact connected Riemann surface, $D, subset, X$ a reduced effective divisor, $G$ a connected complex reductive affine algebraic group and $H_x, subsetneq, G_x$ a Zariski closed subgroup for every $x, in, D$. A framed principal $G$--bun dle is a pair $(E_G,, phi)$, where $E_G$ is a holomorphic principal $G$--bundle on $X$ and $phi$ assigns to each $x, in, D$ a point of the quotient space $(E_G)_x/H_x$. A framed $G$--Higgs bundle is a framed principal $G$--bundle $(E_G,, phi)$ together with a section $theta, in, H^0(X,, text{ad}(E_G)otimes K_Xotimes{mathcal O}_X(D))$ such that $theta(x)$ is compatible with the framing $phi$ for every $x, in, D$. We construct a holomorphic symplectic structure on the moduli space $mathcal{M}_{FH}(G)$ of stable framed $G$--Higgs bundles. Moreover, we prove that the natural morphism from $mathcal{M}_{FH}(G)$ to the moduli space $mathcal{M}_{H}(G)$ of $D$-twisted $G$--Higgs bundles $(E_G,, theta)$ that forgets the framing, is Poisson. These results generalize cite{BLP} where $(G,, {H_x}_{xin D})$ is taken to be $(text{GL}(r,{mathbb C}),, {text{I}_{rtimes r}}_{xin D})$. We also investigate the Hitchin system for $mathcal{M}_{FH}(G)$ and its relationship with that for $mathcal{M}_{H}(G)$.
183 - Marina Logares 2006
Let X be a compact Riemann surface together with a finite set of marked points. We use Morse theoretic techniques to compute the Betti numbers of the parabolic U(2,1)-Higgs bundles moduli spaces over X. We give examples for one marked point showing t hat the Poincare polynomials depend on the system of weights of the parabolic bundle.
Let G be a split reductive group. We introduce the moduli problem of bundle chains parametrizing framed principal G-bundles on chains of lines. Any fan supported in a Weyl chamber determines a stability condition on bundle chains. Its moduli stack pr ovides an equivariant toroidal compactification of G. All toric orbifolds may be thus obtained. Moreover, we get a canonical compactification of any semisimple G, which agrees with the wonderful compactification in the adjoint case, but which in other cases is an orbifold. Finally, we describe the connections with Losev-Manins spaces of weighted pointed curves and with Kauszs compactification of GL(n).
We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank 3 and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Bialynicki-Birula decompositions associated to a scaling action with variation of stability and wall-crossing for moduli spaces of rank 2 pairs, which occur in the fixed locus of this action.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا