ﻻ يوجد ملخص باللغة العربية
The folding algorithmcite{fold1} is a matrix product state algorithm for simulating quantum systems that involves a spatial evolution of a matrix product state. Hence, the computational effort of this algorithm is controlled by the temporal entanglement. We show that this temporal entanglement is, in many cases, equal to the spatial entanglement of a modified Hamiltonian. This inspires a modification to the folding algorithm, that we call the hybrid algorithm. We find that this leads to improved accuracy for the same numerical effort. We then use these algorithms to study relaxation in a transverse plus parallel field Ising model, finding persistent quasi-periodic oscillations for certain choices of initial conditions.
We study t Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multiscale entanglement renormalization ansatz states on the lattice. Using matrix product operators, general topological restrictions on conformal data are derived.
Local constraints play an important role in the effective description of many quantum systems. Their impact on dynamics and entanglement thermalization are just beginning to be unravelled. We develop a large $N$ diagrammatic formalism to exactly eval
We introduce a new functional to estimate the producibility of mixed quantum states. When applicable, this functional outperforms the quantum Fisher information, and can be operatively exploited to characterize quantum states and phases by multiparti
We investigate entanglement properties at quantum phase transitions of an integrable extended Hubbard model in the momentum space representation. Two elementary subsystems are recognized: the single mode of an electron, and the pair of modes (electro
We study the consequences of having translational invariance in space and in time in many-body quantum chaotic systems. We consider an ensemble of random quantum circuits, composed of single-site random unitaries and nearest neighbour couplings, as a