ﻻ يوجد ملخص باللغة العربية
We study the consequences of having translational invariance in space and in time in many-body quantum chaotic systems. We consider an ensemble of random quantum circuits, composed of single-site random unitaries and nearest neighbour couplings, as a minimal model of translational invariant many-body quantum chaotic systems. We evaluate the spectral form factor (SFF) as a sum over many-body Feynman diagrams, which simplifies in the limit of large local Hilbert space dimension $q$. At sufficiently large $t$, diagrams corresponding to rigid translations dominate, reproducing the random matrix theory (RMT) prediction. At finite $t$, we show that translational invariance introduces an additional mechanism which delays the emergence of RMT. Specifically, we identify two universality classes characterising the approach to RMT: in $d=1$, corrections to RMT are generated by different translations applied to extended domains, known as the crossed diagrams; in $d>1$, corrections are the consequence of deranged defects diagrams, whose defects are dilute and localized due to confinement. We introduce a scaling limit of SFF where these universality classes reduce to simple scaling functions. Lastly, we demonstrate universality of the scaling forms with numerical simulations of two circuit models and discuss the validity of the large $q$ limit in the different cases.
We investigate the spectral and transport properties of many-body quantum systems with conserved charges and kinetic constraints. Using random unitary circuits, we compute ensemble-averaged spectral form factors and linear-response correlation functi
We consider a non-interacting many-fermion system populating levels of a unitary random matrix ensemble (equivalent to the q=2 complex Sachdev-Ye-Kitaev model) - a generic model of single-particle quantum chaos. We study the corresponding many-partic
It is suggested that many-body quantum chaos appears as spontaneous symmetry breaking of unitarity in interacting quantum many-body systems. It has been shown that many-body level statistics, probed by the spectral form factor (SFF) defined as $K(bet
We consider the spectral statistics of the Floquet operator for disordered, periodically driven spin chains in their quantum chaotic and many-body localized phases (MBL). The spectral statistics are characterized by the traces of powers $t$ of the Fl
We investigate spectral statistics in spatially extended, chaotic many-body quantum systems with a conserved charge. We compute the spectral form factor $K(t)$ analytically for a minimal Floquet circuit model that has a $U(1)$ symmetry encoded via au