ﻻ يوجد ملخص باللغة العربية
We prove an analogue of Kirchhoffs matrix tree theorem for computing the volume of the tropical Prym variety for double covers of metric graphs. We interpret the formula in terms of a semi-canonical decomposition of the tropical Prym variety, via a careful study of the tropical Abel-Prym map. In particular, we show that the map is harmonic, determine its degree at every cell of the decomposition, and prove that its global degree is $2^{g-1}$. Along the way, we use the Ihara zeta function to provide a new proof of the analogous result for finite graphs. As a counterpart, the appendix by Sebastian Casalaina-Martin shows that the degree of the algebraic Abel-Prym map is $2^{g-1}$ as well.
It is well known that the Prym variety of an etale cyclic covering of a hyperelliptic curve is isogenous to the product of two Jacobians. Moreover, if the degree of the covering is odd or congruent to 2 mod 4, then the canonical isogeny is an isomorp
In this paper we prove that the cohomology of smooth projective tropical varieties verify the tropical analogs of three fundamental theorems which govern the cohomology of complex projective varieties: Hard Lefschetz theorem, Hodge-Riemann relations
We give a short and self-contained proof of the Decomposition Theorem for the non-small resolution of a Special Schubert variety. We also provide an explicit description of the perverse cohomology sheaves. As a by-product of our approach, we obtain a
We consider Gromovs homological higher convexity for complements of tropical varieties, establishing it for complements of tropical hypersurfaces and curves, and for nonarchimedean amoebas of varieties that are complete intersections over the field o
By the fundamental work of Griffiths one knows that, under suitable assumption, homological and algebraic equivalence do not coincide for a general hypersurface section of a smooth projective variety $Y$. In the present paper we prove the same result in case $Y$ has isolated singularities.