ترغب بنشر مسار تعليمي؟ اضغط هنا

Minimal Models of Loop-Induced Higgs Lepton Flavor Violation

164   0   0.0 ( 0 )
 نشر من قبل Carlos Alvarado
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The LHC has recently reported a slight excess in the $hrightarrow tau mu$ channel. If this lepton flavor violating (LFV) decay is confirmed, an extension of the Standard Model (SM) will be required to explain it. In this paper we investigate two different possibilities to accommodate such a LFV process: the first scenario is based on flavor off-diagonal $A$-terms in the Minimal Supersymmetric Standard Model (MSSM), and the second is a model where the Higgs couples to new vectorlike fermions that couple to the SM leptons through a LFV four fermion interaction. In the supersymmetric model, we find that the sizes of the $A$-terms needed to accommodate the $hrightarrow taumu$ excess are in conflict with charge- and color-breaking vacuum constraints. In the second model, the excess can be successfully explained while satisfying all other flavor constrains, with order one couplings, vectorlike fermion masses as low as 15 TeV, and a UV scale higher than 35 TeV.



قيم البحث

اقرأ أيضاً

We report on our study of the LFV processes mu to egamma, muto eee and mu to e conversion in the context of Little Higgs models. Specifically we examine the Littlest Higgs with T-parity (LHT) and the Simplest Little Higgs (SLH) as examples of a Produ ct group and Simple group Little Higgs models respectively. The necessary Feynman rules for both models are obtained in the t Hooft Feynman Gauge up to order v^2/f^2 and predictions for the branching ratios and conversion rates of the LFV processes are calculated to leading order (one-loop level). Comparison with current experimental constraints show that there is some tension and, in order to be within the limits, one requires a higher breaking scale f, alignment of the heavy and light lepton sectors or almost degenerate heavy lepton masses. These constraints are more demanding in the SLH than in the LHT case.
We explore realizations of minimal flavor violation (MFV) for leptons in the simplest seesaw models where the neutrino mass generation mechanism is driven by new fermion singlets (type I) or triplets (type III) and by a scalar triplet (type II). We a lso discuss similarities and differences of the MFV implementation among the three scenarios. To study the phenomenological implications, we consider a number of effective dimension-six operators that are purely leptonic or couple leptons to the standard-model gauge and Higgs bosons and evaluate constraints on the scale of MFV associated with these operators from the latest experimental information. Specifically, we employ the most recent measurements of neutrino mixing parameters as well as the currently available data on flavor-violating radiative and three-body decays of charged leptons, mu -> e conversion in nuclei, the anomalous magnetic moments of charged leptons, and their electric dipole moments. The most stringent lower-limit on the MFV scale comes from the present experimental bound on mu -> e gamma and can reach 500 TeV or higher, depending on the details of the seesaw scheme. With our numerical results, we illustrate some important differences among the seesaw types. In particular, we show that in types I and III there are features which can bring about potentially remarkable effects which do not occur in type II. In addition, we comment on how one of the new effective operators can induce flavor-changing dilepton decays of the Higgs boson, which may be probed in upcoming searches at the LHC.
Flavor symmetric model is one of the attractive Beyond Standard Models (BSMs) to reveal the flavor structure of the Standard Model (SM). A lot of efforts have been put into the model building and we find many kinds of flavor symmetries and setups are able to explain the observed fermion mass matrices. In this paper, we look for common predictions of physical observables among the ones in flavor symmetric models, and try to understand how to test flavor symmetry in experiments. Especially, we focus on the BSMs for leptons with extra Higgs $SU(2)_L$ doublets charged under flavor symmetry. In many flavor models for leptons, remnant symmetry is partially respected after the flavor symmetry breaking, and it controls well the Flavor Changing Neutral Currents (FCNCs) and suggests some crucial predictions against the flavor changing process, although the remnant symmetry is not respected in the full lagrangian. In fact, we see that $tau^- to e^+ mu^- mu^-$ $( mu^+ e^- e^-)$ and $e^+ e^- to tau^+tau^-$ $(mu^-mu^+)$ processes are the most important in the flavor models that the extra Higgs doublets belong to triplet representation of flavor symmetry. For instance, the stringent constraint from the $mu to e gamma$ process could be evaded according to the partial remnant symmetry. We also investigate the breaking effect of the remnant symmetry mediated by the Higgs scalars, and investigate the constraints from the flavor physics: the flavor violating $tau$ and $mu$ decays, the electric dipole moments, and the muon anomalous magnetic moment. We also discuss the correlation between FCNCs and nonzero $theta_{13}$, and point out the physical observables in the charged lepton sector to test the BSMs for the neutrino mixing.
153 - Abdesslam Arhrib 2006
We study the flavor changing neutral current decays of the MSSM Higgs bosons into strange and bottom quarks. We focus on a scenario of minimum flavor violation here, namely only that induced by the CKM matrix. Taking into account constraint from $bto s gamma$, $deltarho$ as well as experimental constraints on the MSSM spectrum, we show that the branching ratio of $(Phito bbar{s})$ and $(Phi to bar{b}s)$ combined, for $Phi$ being either one of the CP even Higgs states, can reach the order $10^{-4}$-$10^{-3}$ for large $tanbeta$, large $mu$, and large $A_t$. The result illustrates the significance of minimal flavor violation scenario which can induce competitive branching fraction for flavor changing Higgs decays. This can be compared with the previous studies where similar branching fraction has been reported, but with additional sources of flavor violations in squark mass matrices. We also discuss some basic features of the flavor violating decays in the generic case.
274 - M. Cannoni 2009
We consider the minimal supersymmetric standard model within a scenario of large $tanbeta$ and heavy squarks and gluinos, with masses of the heavy neutral Higgs bosons below the TeV scale. We allow for the presence of a large, model independent, sour ce of lepton flavor violation (LFV) in the slepton mass matrix in the $tau-mu$ sector by the mass insertion approximation. We constrain the parameter space using the $tau$ LFV decays together with the $B$-mesons physics observables, the anomalous magnetic moment of the muon and the dark matter relic density. We further impose the exclusion limit on spin-independent neutralino-nucleon scattering from CDMS and the recent CDF limit from direct search of the heavy neutral Higgs at the TEVATRON. We re-examine the prospects for the detection of Higgs mediated LFV at LHC, at a photon collider and in LFV decays of the $tau$ such as $tautomueta$, $tautomugamma$. We find rates probably too small to be observed at future experiments if models have to accommodate for the relic density measured by WMAP and explain the $(g-2)_{mu}$ anomaly: better prospects are found if these two constraints are applied only as upper bounds. The spin-independent neutralino-nucleon cross section in the studied constrained parameter space is just below the present CDMS limit and the running XENON100 experiment will cover the region of the parameter space where the lightest neutralino has large gaugino-higgsino mixing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا