ﻻ يوجد ملخص باللغة العربية
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement quantum simulators. Quantum simulators are physical setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. Fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a competitive physical platform for quantum simulation and computing, where high-fidelity state preparation and readout, quantum logic gates and controlled quantum d
Enhancing optical nonlinearities so that they become appreciable on the single photon level and lead to nonclassical light fields has been a central objective in quantum optics for many years. After this has been achieved in individual micro-cavities
In this work, we study the numerical optimization of nearest-neighbor concurrence of bipartite one and two dimensional lattices, as well as non bipartite two dimensional lattices. These systems are described in the framework of a tight-binding Hamilt
We investigate continuous-time quantum walks of two indistinguishable particles [bosons, fermions or hard-core bosons (HCBs)] in one-dimensional lattices with nearest-neighbor interactions. The results for two HCBs are well consistent with the recent
An open question in designing superconducting quantum circuits is how best to reduce the full circuit Hamiltonian which describes their dynamics to an effective two-level qubit Hamiltonian which is appropriate for manipulation of quantum information.