ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum simulation and computing with Rydberg-interacting qubits

83   0   0.0 ( 0 )
 نشر من قبل Shannon Whitlock
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Arrays of optically trapped atoms excited to Rydberg states have recently emerged as a competitive physical platform for quantum simulation and computing, where high-fidelity state preparation and readout, quantum logic gates and controlled quantum dynamics of more than 100 qubits have all been demonstrated. These systems are now approaching the point where reliable quantum computations with hundreds of qubits and realistically thousands of multiqubit gates with low error rates should be within reach for the first time. In this article we give an overview of the Rydberg quantum toolbox, emphasizing the high degree of flexibility for encoding qubits, performing quantum operations and engineering quantum many-body Hamiltonians. We then review the state-of-the-art concerning high-fidelity quantum operations and logic gates as well as quantum simulations in many-body regimes. Finally, we discuss computing schemes that are particularly suited to the Rydberg platform and some of the remaining challenges on the road to general purpose quantum simulators and quantum computers.



قيم البحث

اقرأ أيضاً

Quantum simulation using synthetic systems is a promising route to solve outstanding quantum many-body problems in regimes where other approaches, including numerical ones, fail. Many platforms are being developed towards this goal, in particular bas ed on trapped ions, superconducting circuits, neutral atoms or molecules. All of which face two key challenges: (i) scaling up the ensemble size, whilst retaining high quality control over the parameters and (ii) certifying the outputs for these large systems. Here, we use programmable arrays of individual atoms trapped in optical tweezers, with interactions controlled by laser-excitation to Rydberg states to implement an iconic many-body problem, the antiferromagnetic 2D transverse field Ising model. We push this platform to an unprecedented regime with up to 196 atoms manipulated with high fidelity. We probe the antiferromagnetic order by dynamically tuning the parameters of the Hamiltonian. We illustrate the versatility of our platform by exploring various system sizes on two qualitatively different geometries, square and triangular arrays. We obtain good agreement with numerical calculations up to a computationally feasible size (around 100 particles). This work demonstrates that our platform can be readily used to address open questions in many-body physics.
We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involvi ng many-body interactions and constraints. The central building block of the simulation scheme is constituted by a mesoscopic Rydberg gate that permits the entanglement of several atoms in an efficient, robust and quick protocol. In addition, optical pumping on ancillary atoms provides the dissipative ingredient for engineering the coupling between the system and a tailored environment. As an illustration, we discuss how the simulator enables the simulation of coherent evolution of quantum spin models such as the two-dimensional Heisenberg model and Kitaevs toric code, which involves four-body spin interactions. We moreover show that in principle also the simulation of lattice fermions can be achieved. As an example for controlled dissipative dynamics, we discuss ground state cooling of frustration-free spin Hamiltonians.
We propose a physical realization of quantum cellular automata (QCA) using arrays of ultracold atoms excited to Rydberg states. The key ingredient is the use of programmable multifrequency couplings which generalize the Rydberg blockade and facilitat ion effects to a broader set of non-additive, unitary and non-unitary (dissipative) conditional interactions. Focusing on a 1D array we define a set of elementary QCA rules that generate complex and varied quantum dynamical behavior. Finally we demonstrate theoretically that Rydberg QCA is ideally suited for variational quantum optimization protocols and quantum state engineering by finding parameters that generate highly entangled states as the steady state of the quantum dynamics.
We propose to implement the Jaynes-Cummings model by coupling a few-micrometer large atomic ensemble to a quantized cavity mode and classical laser fields. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a non-resonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states, and that the atomic nonlinearity gives rise to highly non-trivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.
Controlling non-equilibrium quantum dynamics in many-body systems is an outstanding challenge as interactions typically lead to thermalization and a chaotic spreading throughout Hilbert space. We experimentally investigate non-equilibrium dynamics fo llowing rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions. Using a programmable quantum simulator based on Rydberg atom arrays, we probe coherent revivals corresponding to quantum many-body scars. Remarkably, we discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order. We map Hilbert space dynamics, geometry dependence, phase diagrams, and system-size dependence of this emergent phenomenon, demonstrating novel ways to steer entanglement dynamics in many-body systems and enabling potential applications in quantum information science.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا