ترغب بنشر مسار تعليمي؟ اضغط هنا

Effective Hamiltonians for interacting superconducting qubits -- local basis reduction and the Schrieffer-Wolff transformation

89   0   0.0 ( 0 )
 نشر من قبل Gioele Consani
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

An open question in designing superconducting quantum circuits is how best to reduce the full circuit Hamiltonian which describes their dynamics to an effective two-level qubit Hamiltonian which is appropriate for manipulation of quantum information. Despite advances in numerical methods to simulate the spectral properties of multi-element superconducting circuits, the literature lacks a consistent and effective method of determining the effective qubit Hamiltonian. Here we address this problem by introducing a novel local basis reduction method. This method does not require any ad hoc assumption on the structure of the Hamiltonian such as its linear response to applied fields. We numerically benchmark the local basis reduction method against other Hamiltonian reduction methods in the literature and report specific examples of superconducting qubits, including the capacitively-shunted flux qubit, where the standard reduction approaches fail. By combining the local basis reduction method with the Schrieffer-Wolff transformation we further extend its applicability to systems of interacting qubits and use it to extract both non-stoquastic two-qubit Hamiltonians and three-local interaction terms in three-qubit Hamiltonians.

قيم البحث

اقرأ أيضاً

We have carried out a generalized Schrieffer-Wolff transformation of an Anderson two-impurity Hamiltonian to study the low-energy spin interactions of the system. The second-order expansion yields the standard Kondo Hamiltonian for two impurities wit h additional scattering terms. At fouth-order, we get the well-known RKKY interaction. In addition, we also find an antiferromagnetic superexchange coupling and a correlated Kondo coupling between the two impurities.
In this work, we develop a method to design control pulses for fixed-frequency superconducting qubits coupled via tunable couplers based on local control theory, an approach commonly employed to steer chemical reactions. Local control theory provides an algorithm for the monotonic population transfer from a selected initial state to a desired final state of a quantum system through the on-the-fly shaping of an external pulse. The method, which only requires a unique forward time-propagation of the system wavefunction, can serve as starting point for additional refinements that lead to new pulses with improved properties. Among others, we propose an algorithm for the design of pulses that can transfer population in a reversible manner between given initial and final states of coupled fixed-frequency superconducting qubits.
62 - Zhixin Wang , Xiu Gu , Lian-Ao Wu 2014
Although a universal quantum computer is still far from reach, the tremendous advances in controllable quantum devices, in particular with solid-state systems, make it possible to physically implement quantum simulators. Quantum simulators are physic al setups able to simulate other quantum systems efficiently that are intractable on classical computers. Based on solid-state qubit systems with various types of nearest-neighbor interactions, we propose a complete set of algorithms for simulating pairing Hamiltonians. Fidelity of the target states corresponding to each algorithm is numerically studied. We also compare algorithms designed for different types of experimentally available Hamiltonians and analyze their complexity. Furthermore, we design a measurement scheme to extract energy spectra from the simulators. Our simulation algorithms might be feasible with state-of-the-art technology in solid-state quantum devices.
In the field of quantum control, effective Hamiltonian engineering is a powerful tool that utilises perturbation theory to mitigate or enhance the effect that a variation in the Hamiltonian has on the evolution of the system. Here, we provide a gener al framework for computing arbitrary time-dependent perturbation theory terms, as well as their gradients with respect to control variations, enabling the use of gradient methods for optimizing these terms. In particular, we show that effective Hamiltonian engineering is an instance of a bilinear control problem - the same general problem class as that of standard unitary design - and hence the same optimization algorithms apply. We demonstrate this method in various examples, including decoupling, recoupling, and robustness to control errors and stochastic errors. We also present a control engineering example that was used in experiment, demonstrating the practical feasibility of this approach.
Double-dot exchange-only qubit represents a promising compromise between high speed and simple fabrication in solid-state implementations. A couple of interacting double-dot exchange-only qubits, each composed by three electrons distributed in a doub le quantum dot, is exploited to realize controlled-NOT (CNOT) operations. The effective Hamiltonian model of the composite system is expressed by only exchange interactions between pairs of spins. Consequently, the evolution operator has a simple form and represents the starting point for the research of sequences of operations that realize CNOT gates. Two different geometrical configurations of the pair are considered, and a numerical mixed simplex and genetic algorithm is used. We compare the nonphysical case in which all the interactions are controllable from the external and the realistic condition in which intra-dot interactions are fixed by the geometry of the system. In the latter case, we find the CNOT sequences for both the geometrical configurations and we considered a qubit system where electrons are electrostatically confined in two quantum dots in a silicon nanowire. The effects of the geometrical sizes of the nanowire and of the gates on the fundamental parameters controlling the qubit are studied by exploiting a spin-density-functional theory-based simulator. Consequently, CNOT gate performances are evaluated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا