ترغب بنشر مسار تعليمي؟ اضغط هنا

A weak spectral signature of water vapour in the atmosphere of HD 179949 b at high spectral resolution in the L-band

88   0   0.0 ( 0 )
 نشر من قبل Rebecca Webb
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High resolution spectroscopy (R > 20,000) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spectral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES (R = 100,000) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5 microns. We observe a weak (3.0 sigma, or S/N = 4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K-band, we measure a detection significance of 8.4 sigma for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken three years apart, this points to the absence of strong radial-velocity anomalies due, e.g., to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of KP = (145.2 +- 2.0)kms^{-1} (1 sigma) and improve the error bars on this parameter by ~70%. However, we only marginally tighten constraints on orbital inclination (66.2 +3.7 -3.1 degrees) and planet mass (0.963 +0.036 -0.031 Jupiter masses), due to the dominant uncertainties of stellar mass and semi-major axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterisation via high resolution spectroscopy.

قيم البحث

اقرأ أيضاً

We report the detection of water absorption features in the dayside spectrum of the first-known hot Jupiter, 51 Peg b, confirming the star-planet system to be a double-lined spectroscopic binary. We used high-resolution (R~100,000), 3.2 micron spectr a taken with CRIRES/VLT to trace the radial-velocity shift of the water features in the planets dayside atmosphere during 4 hours of its 4.23-day orbit after superior conjunction. We detect the signature of molecular absorption by water at a significance of 5.6 sigma at a systemic velocity of Vsys=-33+/-2 km/s, coincident with the host star, with a corresponding orbital velocity Kp = 133^+4.3_-3.5 km/s. This translates directly to a planet mass of Mp=0.476^+0.032_-0.031MJ, placing it at the transition boundary between Jovian and Neptunian worlds. We determine upper and lower limits on the orbital inclination of the system of 70<i (deg)<82.2. We also provide an updated orbital solution for 51 Peg b, using an extensive set of 639 stellar radial velocities measured between 1994 and 2013, finding no significant evidence of an eccentric orbit. We find no evidence of significant absorption or emission from other major carbon-bearing molecules of the planet, including methane and carbon dioxide. The atmosphere is non-inverted in the temperature-pressure region probed by these observations. The deepest absorption lines reach an observed relative contrast of 0.9x10^-3 with respect to the host star continuum flux, at an angular separation of 3 milliarcseconds. This work is consistent with a previous tentative report of K-band molecular absorption for 51 Peg b by Brogi et al. (2013).
Transmission spectroscopy to date has detected atomic and molecular absorption in Jupiter-sized exoplanets, but intense efforts to measure molecular absorption in the atmospheres of smaller (Neptune-sized) planets during transits have revealed only f eatureless spectra. From this it was concluded that the majority of small, warm planets evolve to sustain high mean molecular weights, opaque clouds, or scattering hazes in their atmospheres, obscuring our ability to observe the composition of these atmospheres. Here we report observations of the transmission spectrum of HAT-P-11b (~4 Earth radii) from the optical to the infrared. We detected water vapour absorption at 1.4 micrometre wavelength. The amplitude of the water absorption (approximately 250 parts-per- million) indicates that the planetary atmosphere is predominantly clear down to ~1 mbar, and sufficiently hydrogen-rich to exhibit a large scale height. The spectrum is indicative of a planetary atmosphere with an upper limit of ~700 times the abundance of heavy elements relative to solar. This is in good agreement with the core accretion theory of planet formation, in which gas giant planets acquire their atmospheres by directly accreting hydrogen-rich gas from the protoplanetary nebulae onto a large rocky or icy core.
High dispersion spectroscopy of brown dwarfs and exoplanets enables exciting science cases, e.g., mapping surface inhomogeneity and measuring spin rate. Here, we present $L$ band observations of HR 8799 c using Keck NIRSPEC (R=15,000) in adaptive opt ics (AO) mode (NIRSPAO). We search for molecular species (H$_2$O and CH$_4$) in the atmosphere of HR 8799 c with a template matching method, which involves cross correlation between reduced spectrum and a template spectrum. We detect H$_2$O but not CH$_4$, which suggests disequilibrium chemistry in the atmosphere of HR 8799 c, and this is consistent with previous findings. We conduct planet signal injection simulations to estimate the sensitivity of our AO-aided high dispersion spectroscopy observations. We conclude that $10^{-4}$ contrast can be reached in $L$ band. The sensitivity is mainly limited by the accuracy of line list used in modeling spectra and detector noise. The latter will be alleviated by the NIRSPEC upgrade.
We use signal enhancement techniques and a matched filter analysis to search for the K band spectroscopic absorption signature of the close orbiting extrasolar giant planet, HD 189733b. With timeseries observations taken with NIRSPEC at the Keck II t elescope, we investigate the relative abundances of H2O and carbon bearing molecules, which have now been identified in the dayside spectrum of HD 189733b. We detect a candidate planet signature with a low level of significance, close to the ~153 km/s velocity amplitude of HD 189733b. However, some systematic variations, mainly due to imperfect telluric line removal, remain in the residual spectral timeseries in which we search for the planetary signal. The robustness of our candidate signature is assessed, enabling us to conclude that it is not possible to confirm the presence of any planetary signal which appears at Fp/F* contrasts deeper than the 95.4 per cent confidence level. Our search does not enable us to detect the planet at a contrast ratio of Fp/F* = 1/1920 with 99.9 per cent confidence. We also investigate the effect of model uncertainties on our ability to reliably recover a planetary signal. The use of incorrect temperature, model opacity wavelengths and model temperature-pressure profiles have important consequences for the least squares deconvolution procedure that we use to boost the S/N ratio in our spectral timeseries observations. We find that mismatches between the empirical and model planetary spectrum may weaken the significance of a detection by ~30-60 per cent, thereby potentially impairing our ability to recover a planetary signal with high confidence.
We present the first exoplanet atmosphere detection made as part of the SPIRou Legacy Survey, a Large Observing Program of 300 nights exploiting the capabilities of SPIRou, the new near-infrared high-resolution (R ~ 70 000) spectro-polarimeter instal led on the Canada-France-Hawaii Telescope (CFHT; 3.6-m). We observed two transits of HD 189733, an extensively studied hot Jupiter that is known to show prominent water vapor absorption in its transmission spectrum. When combining the two transits, we successfully detect the planets water vapor absorption at 5.9 sigma using a cross-correlation t-test, or with a Delta BIC >10 using a log-likelihood calculation. Using a Bayesian retrieval framework assuming a parametrized T-P profile atmosphere models, we constrain the planet atmosphere parameters, in the region probed by our transmission spectrum, to the following values: VMR[H2O] = -4.4^{+0.4}_{-0.4}, and P_cloud >~ 0.2 bar (grey clouds), both of which are consistent with previous studies of this planet. Our retrieved water volume mixing ratio is slightly sub-solar although, combining it with the previously retrieved super-solar CO abundances from other studies would imply super-solar C/O ratio. We furthermore measure a net blue shift of the planet signal of -4.62^{+0.46}_{-0.44} km s-1, which is somewhat larger than many previous measurements and unlikely to result solely from winds in the planets atmosphere, although it could possibly be explained by a transit signal dominated by the trailing limb of the planet. This large blue shift is observed in all the different detection/retrieval methods that were performed and in each of the two transits independently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا