ﻻ يوجد ملخص باللغة العربية
Structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi are reported. The findings support the importance of magneto-elastic effects in this material. X-ray diffraction reveals a structural phase transition at the spin reorientation temperature $T_{SR}$ = 90 K. The distortion is driven by magneto-elastic coupling, and upon cooling transforms the structure from hexagonal to orthorhombic. Heat capacity measurements show a thermal anomaly at the crystallographic transition, which is suppressed rapidly by applied magnetic fields. Effects on the transport and anisotropic magnetic properties of the single crystals are also presented. Increasing anisotropy of the atomic displacement parameters for Bi with increasing temperature above $T_{SR}$ is revealed by neutron diffraction measurements. It is likely that this is directly related to the anisotropic thermal expansion in MnBi, which plays a key role in the spin reorientation and magnetocrystalline anisotropy. The identification of the true ground state crystal structure reported here may be important for future experimental and theoretical studies of this permanent magnet material, which have to date been performed and interpreted using only the high temperature structure.
The structural, phonon, magnetic, dielectric, and magneto dielectric responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This compound showed giant magneto dielectric response (10%-24%) induced by strong spin-lattice coupling a
Precise measurements of YbFeO_3 magnetization in the spin-reoirentation temperature interval are performed. It is shown that ytterbium orthoferrite is well described by a recently developed modified mean field theory developed for ErFeO_3. This valid
Bismuth ferrite, BiFeO3, is the only known room-temperature multiferroic material. We demonstrate here, using neutron scattering measurements in high quality single crystals, that the antiferromagnetic and ferroelectric orders are intimately coupled.
We present a methodology based on the N{e}el model to build a classical spin-lattice Hamiltonian for cubic crystals capable of describing magnetic properties induced by the spin-orbit coupling like magnetocrystalline anisotropy and anisotropic magnet
The vibrational properties of $mathrm{CrI_3}$ single crystals were investigated using Raman spectroscopy and were analyzed with respect to the changes of the crystal structure. All but one mode are observed for both the low-temperature $Rbar{3}$ and