ﻻ يوجد ملخص باللغة العربية
We present a methodology based on the N{e}el model to build a classical spin-lattice Hamiltonian for cubic crystals capable of describing magnetic properties induced by the spin-orbit coupling like magnetocrystalline anisotropy and anisotropic magnetostriction, as well as exchange magnetostriction. Taking advantage of the analytical solutions of the N{e}el model, we derive theoretical expressions for the parameterization of the exchange integrals and N{e}el dipole and quadrupole terms that link them to the magnetic properties of the material. This approach allows to build accurate spin-lattice models with the desire magnetoelastic properties. We also explore a possible way to model the volume dependence of magnetic moment based on the Landau energy. This new feature can allow to consider the effects of hydrostatic pressure on the saturation magnetization. We apply this method to develop a spin-lattice model for BCC Fe and FCC Ni, and we show that it accurately reproduces the experimental elastic tensor, magnetocrystalline anisotropy under pressure, anisotropic magnetostrictive coefficients, volume magnetostriction and saturation magnetization under pressure at zero-temperature. This work could constitute a step towards large-scale modeling of magnetoelastic phenomena.
The edge-cubic spin model on square lattice is studied via Monte Carlo simulation with cluster algorithm. By cooling the system, we found two successive symmetry breakings, i.e., the breakdown of $O_h$ into the group of $C_{3h}$ which then freezes in
Structural and physical properties determined by measurements on large single crystals of the anisotropic ferromagnet MnBi are reported. The findings support the importance of magneto-elastic effects in this material. X-ray diffraction reveals a stru
Plastic deformations in body-centered-cubic (BCC) crystals have been of critical importance in diverse engineering and manufacturing contexts across length scales. Numerous experiments and atomistic simulations on BCC crystals reveal that classical c
The information carrier of modern technologies is the electron charge whose transport inevitably generates Joule heating. Spin-waves, the collective precessional motion of electron spins, do not involve moving charges and thus avoid Joule heating. In
We report strong unidirectional anisotropy in bulk polycrystalline B20 FeGe measured by ferromagnetic resonance spectroscopy. Bulk and micron-sized samples were produced and analytically characterized. FeGe is a B20 compound with inherent Dzyaloshins